
Aurora Vision Library Aurora Vision Library 55.6.6

Machine Vision GuideMachine Vision Guide

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

Image Processing

Blob Analysis

1D Edge Detection

1D Edge Detection 3 Subpixel Precision

Shape Fitting

Template Matching

Using Local Coordinate Systems

Camera Calibration and World Coordinates

Golden Template

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Relative.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/DilateRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/ErodeRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/CloseRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/OpenRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionArea.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionCircularity.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionConvexity.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionRectangularity.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionElongation.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionMoment.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionNumberOfHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionOrientation.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionPerimeterLength.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionBoundingBox.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionBoundingCircle.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionBoundingRectangle.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionContours.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionDiameter.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionMedialAxis.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleStripe.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleStripes.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNStripes.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleRidge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleRidges.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_NCC.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/RecognizeCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_SVM.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deploy_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://www.adaptive-vision.com

Image ProcessingImage Processing

IntroductionIntroduction

There are two major goals of Image Processing techniques:

1. To enhance an image for better human perception

2. To make the information it contains more salient or easier to extract

It should be kept in mind that in the context of computer vision only the second point is important.
Preparing images for human perception is not part of computer vision; it is only part of information
visualization. In typical machine vision applications this comes only at the end of the program and
usually does not pose any problem.

The first and the most important advice for machine vision engineers is: avoid image transformationsavoid image transformations
designed for human perception when the goal is to extract informationdesigned for human perception when the goal is to extract information. Most notable examples of
transformations that are not only not interesting, but can even be highly disruptive, are:

JPEG compression (creates artifacts not visible by human eye, but disruptive for algorithms)

CIE Lab and CIE XYZ color spaces (specifically designed for human perception)

Edge enhancement filters (which improve only the "apparent sharpness")

Image thresholding performed before edge detection (precludes sub-pixel precision)

Examples of image processing operations that can really improve information extraction are:

Gaussian image smoothing (removes noise, while preserving information about local features)

Image morphology (can remove unwanted details)

Gradient and high-pass filters (highlight information about object contours)

Basic color space transformations like HSV (separate information about chromaticity and brightness)

Pixel-by-pixel image composition (e.g. can highlight image differences in relation to a reference
image)

Regions of InterestRegions of Interest

The image processing tools provided by Aurora Vision have a special inRoi input (of Region type), that can
limit the spatial scope of the operation. The region can be of any shape.

Remarks:

The output image will be black outside of the inRoi region.

To obtain an image that has its pixels modified in inRoi and copied outside of it, one can use the
ComposeImages filter.

The default value for inRoi is Auto and causes the entire image to be processed.

Although inRoi can be used to significantly speed up processing, it should be used with care. The
performance gain may be far from proportional to the inRoi area, especially in comparison to
processing the entire image (Auto). This is due to the fact, that in many cases more SSE optimizations
are possible when inRoi is not used.

Some filters have a second region of interest called inSourceRoi. While inRoi defines the range of pixels
that will be written in the output image, the inSourceRoi parameter defines the range of pixels that can
be read from the input image.

Image Boundary ProcessingImage Boundary Processing

Some image processing filters, especially those from the Image Local Transforms category, use information
from some local neighborhood of a pixel. This causes a problem near the image borders as not all input
data is available. The policy applied in our tools is:

Never assume any specific value outside of the image, unless specifically defined by the user.

If only partial information is available, it is better not to detect anything, than detect something
that does not exist.

In particular, the filters that use information from a local neighborhood just use smaller (cropped)
neighbourhood near the image borders. This is something, however, that has to be taken into account, when
relying on the results 3 for example results of the smoothing filters can be up to 2 times less smooth at
the image borders (due to half of the neighborhood size), whereas results of the morphological filters may
"stick" to the image borders. If the highest reliability is required, the general rule is: useuse
appropriate regions of interest to ignore image processing results that come from incompleteappropriate regions of interest to ignore image processing results that come from incomplete
informationinformation (near the image borders).

An input image and the inRoi. Result of an operation performed within inRoi.

https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageCombinators/ComposeImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/index.html

ToolsetToolset

Image CombinatorsImage Combinators

The filters from the Image Combinators category take two images and perform a pixel-by-pixel
transformation into a single image. This can be used for example to highlight differences between images
or to normalize brightness 3 as in the example below:

Image SmoothingImage Smoothing

The main purpose of the image smoothing filters (located in the Image Local Transforms category) is
removal of noise. There are several different ways to perform this task with different trade-offs. On the
example below three methods are presented:

1. Mean smoothing 3 simply takes the average pixel value from a rectangular neighborhood; it is the
fastest method.

2. Median smoothing 3 simply takes the median pixel value from a rectangular neighborhood; preserves
edges, but is relatively slow.

3. Gauss smoothing 3 computes a weighted average of the pixel values with Gaussian coefficients as the
weights; its advantage is isotropy and reasonable speed for small kernels.

Image MorphologyImage Morphology

Basic morphological operators 3 DilateImage and ErodeImage 3 transform the input image by choosing maximum
or minimum pixel values from a local neighborhood. Other morphological operators combine these two basic
operations to perform more complex tasks. Here is an example of using the OpenImage filter to remove salt
and pepper noise from an image:

Gradient AnalysisGradient Analysis

An image gradient is a vector describing direction and magnitude (strength) of local brightness changes.
Gradients are used inside of many computer vision tools 3 for example in object contour detection, edge-
based template matching and in barcode and DataMatrix detection.

Available filters:

GradientImage 3 produces a 2-channel image of signed values; each pixel denotes a gradient vector.

GradientMagnitudeImage 3 produces a single channel image of gradient magnitudes, i.e. the lengths of
the vectors (or their approximations).

GradientDirAndPresenceImage 3 produces a single channel image of gradient directions mapped into the
range from 1 to 255; 0 means no significant gradient.

Input image with high
reflections.

Image of the reflections
(calibrating).

The result of applying DivideImages with
inScale = 128 (inRoi was used).

Input image with some
noise.

Result of applying
SmoothImage_Mean.

Result of applying
SmoothImage_Gauss.

Result of applying
SmoothImage_Median.

Input image with salt-and-pepper noise. Result of applying OpenImage.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageCombinators/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageCombinators/DivideImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Mean.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Median.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/DilateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/ErodeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/OpenImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/OpenImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientDirAndPresenceImage.html

Spatial TransformsSpatial Transforms

Spatial transforms modify an image by changing locations, but not values, of pixels. Here are sample
results of some of the most basic operations:

There are also interesting spatial transform tools that allow to transform a two dimensional vision
problem into a 1.5-dimensional one, which can be very useful for further processing:

An input image and a path.

Result of ImageAlongPath.

Spatial Transform MapsSpatial Transform Maps

The spatial transform tools perform a task that consist of two steps for each pixel:

1. compute the destination coordinates (and some coefficients when interpolation is used),

2. copy the pixel value.

In many cases the transformation is constant 3 for example we might be rotating an image always by the

An input image. Result of GradientMagnitudeImage.

Result of GradientDirAndPresenceImage. Diagnostic output of GradientImage showing hue-
coded directions.

Result of
MirrorImage.

Result of
RotateImage.

Result of ShearImage.
Result of DownsampleImage.

Result of
TransposeImage.

Result of
TranslateImage.

Result of CropImage. Result of UncropImage applied
to the result of CropImage.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientMagnitudeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientDirAndPresenceImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/GradientImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/MirrorImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/RotateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/ShearImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/DownsampleImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/TransposeImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/TranslateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/UncropImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/ImageAlongPath.html

same angle. In such cases the first step 3 computing the coordinates and coefficients 3 can be done once,
before the main loop of the program. Aurora Vision provides the Image Spatial Transforms Maps category of
filters for exactly that purpose. When you are able to compute the transform beforehand, storing it in the
SpatialMap type, in the main loop only the RemapImage filter has to be executed. This approach will be
much faster than using standard spatial transform tools.

The SpatialMap type is a map of image locations and their corresponding positions after given geometric
transformation has been applied.

Additionally, the Image Spatial Transforms Maps category provides several filters that can be used to
flatten the curvature of a physical object. They can be used for e.g. reading labels glued onto curved
surfaces. These filters model basic 3D objects:

1. CylinderCylinder (CreateCylinderMap) 3 e.g. flattening of a bottle label.

2. SphereSphere (CreateSphereMap) 3 e.g. reading a label from light bulb.

3. BoxBox (CreatePerspectiveMap_Points or CreatePerspectiveMap_Path) 3 e.g. reading a label from a box.

4. Circular objects (polar transform)Circular objects (polar transform) (CreateImagePolarTransformMap) - e.g. reading a label wrapped
around a DVD disk center.

Example of remapping of a spherical object using CreateSphereMap and RemapImage. Image before and after
remapping.

Furthermore custom spatial maps can be created with ConvertMatrixMapsToSpatialMap.

An example of custom image transform created with ConvertMatrixMapsToSpatialMap. Image before and after
remapping.

Image ThresholdingImage Thresholding

The task of Image Thresholding filters is to classify image pixel values as foreground (white) or
background (black). The basic filters ThresholdImage and ThresholdToRegion use just a simple range of
pixel values 3 a pixel value is classified as foreground iff it belongs to the range. The ThresholdImage
filter just transforms an image into another image, whereas the ThresholdToRegion filter creates a region
corresponding to the foreground pixels. Other available filters allow more advanced classification:

ThresholdImage_Dynamic and ThresholdToRegion_Dynamic use average local brightness to compensate global
illumination variations.

ThresholdImage_RGB and ThresholdToRegion_RGB select pixel values matching a range defined in the RGB
(the standard) color space.

ThresholdImage_HSx and ThresholdToRegion_HSx select pixel values matching a range defined in the HSx
color space.

ThresholdImage_Relative and ThresholdToRegion_Relative allow to use a different threshold value at
each pixel location.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/index.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/SpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/RemapImage.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/SpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateCylinderMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreatePerspectiveMap_Points.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreatePerspectiveMap_Path.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateImagePolarTransformMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/CreateSphereMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/RemapImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransformsMaps/ConvertMatrixMapsToSpatialMap.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_Relative.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Relative.html

There is also an additional filter SelectThresholdValue which implements a number of methods for automatic
threshold value selection. It should, however, be used with much care, because there is no universal
method that works in all cases and even a method that works well for a particular case might fail in
special cases.

Image Pixel AnalysisImage Pixel Analysis

When reliable object detection by color analysis is required, there are two filters that can be useful:
ColorDistance and ColorDistanceImage. These filters compare colors in the RGB space, but internally
separate analysis of brightness and chromaticity. This separation is very important, because in many cases
variations in brightness are much higher than variations in chromaticity. Assigning more significance to
the latter (high value of the inChromaAmount input) allows to detect areas having the specified color even
in presence of highly uneven illumination:

Image FeaturesImage Features

Image Features is a category of image processing tools that are already very close to computer vision 3
they transform pixel information into simple higher-level data structures. Most notable examples are:
ImageLocalMaxima which finds the points at which the brightness is locally the highest, ImageProjection
which creates a profile from sums of pixel values in columns or in rows, ImageAverage which averages pixel
values in the entire region of interest. Here is an example application:

Input image with uneven light. Result of ThresholdImage 3 the
bars can not be recognized.

Result of ThresholdImage_Dynamic
3 the bars are correct.

Input image with uneven
light.

Result of ColorDistanceImage for the
red color with inChromaAmount = 1.0.
Dark areas correspond to low color

distance.

Result of thresholding
reveals the location of the

red dots on the globe.

Input image with digits to be segmented. Result of preprocessing with CloseImage.

Digit locations extracted by applying
SmoothImage_Gauss and ImageLocalMaxima.

Profile of the vertical projection revealing
regions of digits and the boundaries between them.

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdImage_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/SelectThresholdValue.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ColorDistance.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ColorDistanceImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ColorDistanceImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageLocalMaxima.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageProjection.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImagePixelStatistics/ImageAverage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/CloseImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageLocalTransforms/SmoothImage_Gauss.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageLocalMaxima.html

Blob AnalysisBlob Analysis

IntroductionIntroduction

Blob Analysis is a fundamental technique of machine vision based on
analysis of consistent image regions. As such it is a tool of choice for
applications in which the objects being inspected are clearly
discernible from the background. Diverse set of Blob Analysis methods
allows to create tailored solutions for a wide range of visual
inspection problems.

Main advantages of this technique include high flexibility and excellent
performance. Its limitations are: clear background-foreground relation
requirement (see Template Matching for an alternative) and pixel-precision (see 1D Edge Detection for an
alternative).

ConceptConcept

Let us begin by defining the notions of region and blob.

Region is any subset of image pixels. In Aurora Vision Studio regions are represented using Region
data type.

Blob is a connected region. In Aurora Vision Studio blobs (being a special case of region) are
represented using the same Region data type. They can be obtained from any region using a single
SplitRegionIntoBlobs filter or (less frequently) directly from an image using image segmentation
filters from category Image Analysis techniques.

The basic scenario of the Blob Analysis solution consists of the following steps:

1. ExtractionExtraction - in the initial step one of the Image Thresholding techniques is applied to obtain a
region corresponding to the objects (or single object) being inspected.

2. RefinementRefinement - the extracted region is often flawed by noise of various kind (e.g. due to inconsistent
lightning or poor image quality). In the Refinement step the region is enhanced using region
transformation techniques.

3. AnalysisAnalysis - in the final step the refined region is subject to measurements and the final results are
computed. If the region represents multiple objects, it is split into individual blobs each of which
is inspected separately.

ExamplesExamples

The following examples illustrate the general schema of Blob Analysis algorithms. Each of the techniques
represented in the examples (thresholding, morphology, calculation of region features, etc.) is inspected
in detail in later sections.

An example image. Region of pixels darker than 128. Decomposition of the region into
array of blobs.

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/index.html

Rubber BandRubber Band

MountsMounts

In this, idealized, example we analyze a picture of an
electronic device wrapped in a rubber band. The aim here is
to compute the area of the visible part of the band (e.g. to
decide whether it was assembled correctly).

In this case each of the steps: Extraction, Refinement and
Analysis is represented by a single filter.

ExtractionExtraction - to obtain a region corresponding to the red
band a Color-based Thresholding technique is applied. The
ThresholdToRegion_HSx filter is capable of finding the
region of pixels of given color characteristics - in this
case it is targeted to detect red pixels.

RefinementRefinement - the problem of filling the gaps in the
extracted region is a standard one. Classic solutions for it
are the region morphology techniques. Here, the CloseRegion
filter is used to fill the gaps.

AnalysisAnalysis - finally, a single RegionArea filter is used to
compute the area of the obtained region.

Initial imageInitial image

ExtractionExtraction

RefinementRefinement

ResultsResults

In this example a picture of a set of mounts is inspected to
identify the damaged ones.

ExtractionExtraction - as the lightning in the image is uniform, the
objects are consistently dark and the background is
consistently bright, the extraction of the region
corresponding to the objects is a simple task. A basic
ThresholdToRegion filter does the job, and does it so well
that no RefinementRefinement phase is needed in this example.

AnalysisAnalysis - as we need to analyze each of the blobs
separately, we start by applying the SplitRegionIntoBlobs
filter to the extracted region.

To distinguish the bad parts from the correct parts we need
to pick a property of a region (e.g. area, circularity,
etc.) that we expect to be high for the good parts and low
for the bad parts (or conversely). Here, the area would do,
but we will pick a somewhat more sophisticated
rectangularity feature, which will compute the similarity-
to-rectangle factor for each of the blobs.

Once we have chosen the rectangularity feature of the blobs,
all that needs to be done is to feed the regions to be
classified to the ClassifyRegions filter (and to set its
inMinimuminMinimum value parameter). The blobs of too low
rectangularity are available at the outRejectedoutRejected output of
the classifying filter.

Input imageInput image

ExtractionExtraction

AnalysisAnalysis

ResultsResults

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/CloseRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionArea.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionRelations/ClassifyRegions.html

ExtractionExtraction

There are two techniques that allow to extract regions from an image:

Image ThresholdingImage Thresholding - commonly used methods that compute a region as a set of pixels that meet
certain condition dependent on the specific operator (e.g. region of pixels brighter than given value,
or brighter than the average brightness in their neighborhood). Note that the resulting data is always
a single region, possibly representing numerous objects.

Image SegmentationImage Segmentation - more specialized set of methods that compute a set of blobs corresponding to
areas in the image that meet certain condition. The resulting data is always an array of connected
regions (blobs).

ThresholdingThresholding

Image Thresholding techniques are preferred for common applications (even those in which a set of objects
is inspected rather than a single object) because of their simplicity and excellent performance. In Aurora
Vision Studio there are six filters for image-to-region thresholding, each of them implementing a
different thresholding method.

Classic ThresholdingClassic Thresholding

ThresholdToRegion simply selects the image pixels of the specified brightness. It should be considered a
basic tool and applied whenever the intensity of the inspected object is constant, consistent and clearly
different from the intensity of the background.

Dynamic ThresholdingDynamic Thresholding

Inconsistent brightness of the objects being inspected is a common problem usually caused by the
imperfections of the lightning setup. As we can see in the example below, it is often the case that the
objects in one part of the image actually have the same brightness as the background in another part of
the image. In such case it is not possible to use the basic ThresholdToRegion filter and
ThresholdToRegion_Dynamic should be considered instead. The latter selects image pixels that are locally
bright/dark. Specifically - the filter selects the image pixels of the given relative local brightness
defined as the difference between the pixel intensity and the average intensity in its neighborhood.

Color-based ThresholdingColor-based Thresholding

When inspection is conducted on color images it may be the case that despite a significant difference in
color, the brightness of the objects is actually the same as the brightness of their neighborhood. In such
case it is advisable to use Color-based Thresholding filters: ThresholdToRegion_RGB,
ThresholdToRegion_HSx. The suffix denote the color space in which we define the desired pixel
characteristic and not the space used in the image representation. In other words - both of these filters
can be used to process standard RGB color image.

Brightness-Brightness-
based based
(basic)(basic)

Brightness-Brightness-
based based

(additional)(additional)

Color-basedColor-based

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_RGB.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_HSx.html

RefinementRefinement

Region MorphologyRegion Morphology

Region Morphology is a classic technique of region transformation. The core concept of this toolset is the
usage of a structuring element also known as the kernel. The kernel is a relatively small shape that is
repeatedly centered at each pixel within dimensions of the region that is being transformed. Every such
pixel is either added to the resulting region or not, depending on operation-specific condition on the
minimum number of kernel pixels that have to overlap with actual input region pixels (in the given
position of the kernel). See description of DilationDilation for an example.

Dilation and ErosionDilation and Erosion

DilationDilation is one of two basic morphological transformations. Here each pixel PP within the dimensions of
the region being transformed is added to the resulting region if and only if the structuring element
centered at PP overlaps with at least one pixel that belongs to the input region. Note that for a circular
kernel such transformation is equivalent to a uniform expansion of the region in every direction.

ErosionErosion is a dual operation of DilationDilation. Here, each pixel PP within the dimensions of the region being
transformed is added to the resulting region if and only if the structuring element centered at PP is fully
contained in the region pixels. Note that for a circular kernel such transformation is equivalent to a
uniform reduction of the region in every direction.

Closing and OpeningClosing and Opening

The actual power of the Region MorphologyRegion Morphology lies in its composite operators - ClosingClosing and OpeningOpening. As we
may have recently noticed, during the blind region expansion performed by the DilationDilation operator, the gaps
in the transformed region are filled in. Unfortunately, the expanded region no longer corresponds to the
objects being inspected. However, we can apply the ErosionErosion operator to bring the expanded region back to
its original boundaries. The key point is that the gaps that were completely filled during the dilation
will stay filled after the erosion. The operation of applying ErosionErosion to the result of DilationDilation of the
region is called ClosingClosing, and is a tool of choice for the task of filling the gaps in the extracted
region.

OpeningOpening is a dual operation of ClosingClosing. Here, the region being transformed is initially eroded and then
dilated. The resulting region preserves the form of the initial region, with the exception of thin/small
parts, that are removed during the process. Therefore, OpeningOpening is a tool for removing the thin/outlying
parts from a region. We may note that in the example below, the OpeningOpening does the - otherwise relatively
complicated - job of finding the segment of the rubber band of excessive width.

An example image. Mono equivalent of the image
depicting brightness of its

pixels.

Result of the color-based
thresholding targeted at red

pixels.

ExpandingExpanding ReducingReducing

BasicBasic

CompositeComposite

Other Refinement MethodsOther Refinement Methods

AnalysisAnalysis

Once we obtain the region that corresponds to the object or the objects being inspected, we may commence
the analysis - that is, extract the information we are interested in.

Region FeaturesRegion Features

Aurora Vision Studio allows to compute a wide range of numeric (e.g. area) and non-numeric (e.g. bounding
circle) region features. Calculation of the measures describing the obtained region is often the very aim
of applying the blob analysis in the first place. If we are to check whether the rectangular packaging box
is deformed or not, we may be interested in calculating the rectangularity factor of the packaging region.
If we are to check if the chocolate coating on a biscuit is broad enough, we may want to know the area of
the coating region.

It is important to remember, that when the obtained region corresponds to multiple image objects (and we
want to inspect each of them separately), we should apply the SplitRegionIntoBlobs filter before
performing the calculation of features.

Numeric FeaturesNumeric Features

Each of the following filters computes a number that expresses a specific property of the region shape.

Annotations in brackets indicate the range of the resulting values.

Non-numeric FeaturesNon-numeric Features

Each of the following filters computes an object related to the shape of the region. Note that the
primitives extracted using these filters can be made subject of further analysis. For instance, we can
extract the holes of the region using the RegionHoles filter and then measure their areas using the
RegionArea filter.

Annotations in brackets indicate Aurora Vision Studio's type of the result.

Size of the region (0 -) Similarity to a circle (0.0 - 1.0)

Similarity to own convex hull (0.0 - 1.0) Similarity to a rectangle (0.0 - 1.0)

Similarity to a line (0.0 -) Moments of the region (0.0 -)

Count of the region holes (0 -) Orientation of the main region axis (0.0 - 180.0)

Length of the region contour (0.0 -)

https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionFeatures/RegionArea.html

Case StudiesCase Studies

CapsulesCapsules

In this example we inspect a set of washing machine capsules on a conveyor line. Our aim is to identify
the deformed capsules.

We will proceed in two steps: we will commence by designing a simple program that, given picture of the
conveyor line, will be able to identify the region corresponding to the capsule(s) in the picture. In the
second step we will use this program as a building block of the complete solution.

Smallest axis-aligned rectangle containing the region
(Box)

Smallest circle containing the region (Circle2D)

Smallest any-orientation rectangle containing the
region (Rectangle2D)

Boundaries of the region (PathArray)

Longest segment connecting two points inside the region
(Segment2D)

Array of blobs representing gaps in the region
(RegionArray)

Skeleton of the region (PathArray)

FindRegion RoutineFindRegion Routine

Our routine for ExtractionExtraction and RefinementRefinement of the region is ready. As it constitutes a continuous block
of filters performing a well defined task, it is advisable to encapsulate the routine inside a function to
enhance the readability of the soon-to-be-growing program.

In this section we will develop a program that will be responsible for the
ExtractionExtraction and RefinementRefinement phases of the final solution. For brevity of
presentation in this part we will limit the input image to its initial segment.

After a brief inspection of the input image we may note that the task at hand
will not be trivial - the average brightness of the capsule body is similar to
the intensity of the background. On the other hand the border of the capsule is
consistently darker than the background. As it is the border of the object that
bears significant information about its shape we may use the basic
ThresholdToRegion filter to extract the darkest pixels of the image with the
intention of filling the extracted capsule border during further refinement.

The extracted region certainly requires such refinement - actually, there are
two issues that need to be addressed. We need to fill the shape of the capsule
and eliminate the thin horizontal stripes corresponding to the elements of the
conveyor line setup. Fortunately, there are fairly straightforward solutions
for both of these problems.

FillRegionHoles will extend the region to include all pixels enclosed by
present region pixels. After the region is filled all that remains is the
removal of the thin conveyor lines using the classic OpenRegion filter.

Initial imageInitial image

ThresholdToRegionThresholdToRegion

FillRegionHolesFillRegionHoles

OpenRegionOpenRegion

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/FillRegionHoles.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/OpenRegion.html

Complete SolutionComplete Solution

Our program right now is
capable of extracting the
region that directly
corresponds to the capsules
visible in the image. What
remains is to inspect each
capsule and classify it as
a correct or deformed one.

As we want to analyze each
capsule separately, we
should start with
decomposition of the
extracted region into an
array of connected
components (blobs). This
common operation can be
performed using the
straightforward
SplitRegionIntoBlobs
filter.

We are approaching the crucial part of our solution - how are we going to distinguish correct capsules
from deformed ones? At this stage it is advisable to have a look at the summary of numeric region features
provided in AnalysisAnalysis section. If we could find a numeric region property that is correlated with the
nature of the problem at hand (e.g. it takes low values for a correct capsules and high values for a
deformed one, or conversely), we would be nearly done.

Rectangularity of a shape is defined as the ratio between its area and area of its smallest enclosing
rectangle - the higher the value, the more the shape of the object resembles a rectangle. As the shape of
a correct capsule is almost rectangular (it is a rectangle with rounded corners) and clearly more
rectangular than the shape of deformed capsule, we may consider using rectangularity feature to classify
the capsules.

Having selected the numeric feature that will be used for the classification, we are ready to add the
ClassifyRegions filter to our program and feed it with data. We pass the array of capsule blobs on its
inRegionsinRegions input and we select Rectangularity on the inFeatureinFeature input. After brief interactive
experimentation with the inMinimum threshold we may observe that setting the minimum rectangularity to
0.95 allows proper discrimination of correct (available at outAcceptedoutAccepted) and deformed (outRejectedoutRejected)
capsule blobs.

https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionRelations/ClassifyRegions.html

Region extracted by the FindRegion routine.

Decomposition of the region into individual blobs.

Blobs of low rectangularity selected by ClassifyRegions filter.

https://docs.adaptive-vision.com/5.6/avl/functions/RegionRelations/ClassifyRegions.html

1D Edge Detection1D Edge Detection

IntroductionIntroduction

1D Edge Detection (also called 1D Measurement) is a classic technique of
machine vision where the information about image is extracted from one-
dimensional profiles of image brightness. As we will see, it can be used
for measurements as well as for positioning of the inspected objects.

Main advantages of this technique include sub-pixel precision and high
performance.

ConceptConcept

The 1D Edge Detection technique is based on an observation that any edge in the image corresponds to a
rapid brightness change in the direction perpendicular to that edge. Therefore, to detect the image edges
we can scan the image along a path and look for the places of significant change of intensity in the
extracted brightness profile.

The computation proceeds in the following steps:

1. Profile extractionProfile extraction 3 firstly the profile of brightness along the given path is extracted. Usually
the profile is smoothed to remove the noise.

2. Edge extractionEdge extraction 3 the points of significant change of profile brightness are identified as edge
points 3 points where perpendicular edges intersect the scan line.

3. Post-processingPost-processing 3 the final results are computed using one of the available methods. For instance
ScanSingleEdge filter will select and return the strongest of the extracted edges, while
ScanMultipleEdges filter will return all of them.

ExampleExample

The image is scanned along the path and the brightness profile is extracted and smoothed.

Brightness profile is differentiated. Notice four peaks of the profile derivative which correspond to four
prominent image edges intersecting the scan line. Finally the peaks stronger than some selected value

(here minimal strength is set to 5) are identified as edge points.

Filter ToolsetFilter Toolset

Basic toolset for the 1D Edge Detection-based techniques scanning for edges consists of 9 filters each of
which runs a single scan along the given path (inScanPathinScanPath). The filters differ on the structure of
interest (edges / ridges / stripes (edge pairs)) and its cardinality (one / any fixed number / unknown
number).

EdgesEdges

SingleSingle
ResultResult

MultipleMultiple
ResultsResults

FixedFixed
NumberNumber

ofof
ResultsResults

https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleEdges.html

Note that in Aurora Vision Library there is the CreateScanMapCreateScanMap function that has to be used before a usage
of any other 1D Edge Detection function. The special function creates a scan map, which is passed as an
input to other functions considerably speeding up the computations.

ParametersParameters

Profile ExtractionProfile Extraction

In each of the nine filters the brightness profile is extracted in
exactly the same way. The stripe of pixels along inScanPathinScanPath of width
inScanWidthinScanWidth is traversed and the pixel values across the path are
accumulated to form one-dimensional profile. In the picture on the right
the stripe of processed pixels is marked in orange, while inScanPathinScanPath is
marked in red.

The extracted profile is smoothed using Gaussian smoothing with standard
deviation of inSmoothingStdDevinSmoothingStdDev. This parameter is important for the robustness of the computation - we
should pick the value that is high enough to eliminate noise that could introduce false / irrelevant
extrema to the profile derivative, but low enough to preserve the actual edges we are to detect.

The inSmoothingStdDevinSmoothingStdDev parameter should be adjusted through interactive experimentation using
outBrightnessProfileoutBrightnessProfile output, as demonstrated below.

Edge ExtractionEdge Extraction

StripesStripes

SingleSingle
ResultResult

MultipleMultiple
ResultsResults

FixedFixed
NumberNumber

ofof
ResultsResults

RidgesRidges

SingleSingle
ResultResult

MultipleMultiple
ResultsResults

FixedFixed
NumberNumber

ofof
ResultsResults

Too low inSmoothingStdDevinSmoothingStdDev - too
much noise

Appropriate inSmoothingStdDevinSmoothingStdDev -
low noise, significant edges are

preserved

Too high inSmoothingStdDevinSmoothingStdDev -
significant edges are attenuated

After the brightness profile is extracted and refined, the derivative of
the profile is computed and its local extrema of magnitude at least
inMinMagnitudeinMinMagnitude are identified as edge points. The inMinMagnitudeinMinMagnitude
parameter should be adjusted using the outResponseProfileoutResponseProfile output.

The picture on the right depicts an example outResponseProfileoutResponseProfile
profile. In this case the significant extrema vary in magnitude from 11
to 13, while the magnitude of other extrema is lower than 3. Therefore
any inMinMagnitudeinMinMagnitude value in range (4, 10) would be appropriate.

Edge TransitionEdge Transition

Filters being discussed are capable of filtering the edges depending on the kind of transition they
represent - that is, depending on whether the intensity changes from bright to dark, or from dark to
bright. The filters detecting individual edges apply the same condition defined using the inTransitioninTransition
parameter to each edge (possible choices are bright-to-dark, dark-to-bright and any).

Stripe IntensityStripe Intensity

The filters detecting stripes expect the edges to alternate in their characteristics. The parameter
inIntensityinIntensity defines whether each stripe should bound the area that is brighter, or darker than the
surrounding space.

Case Study: BladesCase Study: Blades

Assume we want to count
the blades of a circular
saw from the picture.

We will solve this problem
running a single 1D Edge
Detection scan along a
circular path intersecting
the blades, and therefore
we need to produce
appropriate circular path.
For that we will use a
straightforward
CreateCirclePath filter.
The built-in editor will
allow us to point & click
the required inCircleinCircle
parameter.

The next step will be to
pick a suitable measuring filter. Because the path will alternate between dark blades and white
background, we will use a filter that is capable of measuring stripes. As we do not now how many blades
there are on the image (that is what we need to compute), the ScanMultipleStripes filter will be a perfect
choice.

We expect the measuring filter to identify each blade as a single stripe (or each space between blades,
depending on our selection of inIntensityinIntensity), therefore all we need to do to compute the number of blades
is to read the value of the outStripes.CountoutStripes.Count property output of the measuring filter.

The program solves the problem as expected (perhaps after increasing the inSmoothingStdDevinSmoothingStdDev from default
of 0.6 to bigger value of 1.0 or 2.0) and detects all 30 blades of the saw.

inTransitioninTransition = Any inTransitioninTransition = BrightToDark inTransitioninTransition = DarkToBright

inIntensityinIntensity = Dark inIntensityinIntensity = Bright

https://docs.adaptive-vision.com/5.6/avl/functions/PathBasics/CreateCirclePath.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanMultipleStripes.html

1D Edge Detection 3 Subpixel Precision1D Edge Detection 3 Subpixel Precision

IntroductionIntroduction

One of the key strengths of the 1D Edge Detection tools is their ability do detect edges with precision
higher than the pixel grid. This is possible, because the values of the derivative profile (of pixel
values) can be interpolated and its maxima can be found analytically.

Example: Parabola FittingExample: Parabola Fitting

Let us consider a sample profile of pixel values corresponding to an edge (red):

Sample edge profile (red) and its derivative (green). Please note, that the derivative is shifted by 0.5.

The steepest segment is between points 4.0 and 5.0, which corresponds to the maximum of the derivative
(green) at 4.5. Without the subpixel precision the edge would be found at this point.

It is, however, possible to consider information about the values of the neighbouring profile points to
extract the edge location with higher precision. The simplest method is to fit a parabola to three
consecutive points of the derivative profile:

Fitting a parabola to three consecutive points.

Now, the edge point we are looking for can be taken from the maximum of the parabola. In this case it will
be 4.363, which is already a subpixel-precise result. This precision is still not very high, however. We
know it from an experiment 3 this particular profile, which we are considering in this example, has been
created from a perfect gaussian edge located at the point 430 and downsampled 100 times to simulate a
camera looking at an edge at the point 4.3. The error that we got, is 0.063 px. From other experiments we
know that in the worst case it can be up to 1/6 px.

Advanced: Methods Available in Aurora VisionAdvanced: Methods Available in Aurora Vision

More advanced methods can be used that consider not three, but four consecutive points and which employ
additional techniques to assure the highest precision in presence of noise and other practical edge
distortions. In Aurora Vision Studio they are available in a form of 3 different profile interpolation
methods:

Linear 3 the simplest method that results in pixel-precise results,

Quadratic3 3 an improved fitting of parabola to 3 consecutive points,

Quadratic4 3 an advanced method that fits parabola to 4 consecutive points.

The precision of these methods on perfect gaussian edges is respectively: 1/2 px, 1/6 px and 1/23 px. It
has to be added, however, that the Quadratic4 method differs significantly in its performance on edges
which are only slightly blurred 3 when the image quality is close to perfect, the precision can be even
higher than 1/50 px.

Shape FittingShape Fitting

IntroductionIntroduction

Shape Fitting is a machine vision technique that allows for precise
detection of objects whose shapes and rough positions are known in
advance. It is most often used in measurement applications for
establishing line segments, circles, arcs and paths defining the shape
that is to be measured.

As this technique is derived from 1D Edge Detection, its key advantages
are similar 3 including sub-pixel precision and high performance.

ConceptConcept

The main idea standing behind Shape Fitting is that a continuous object (such as a circle, an arc or a
segment) can be determined using a finite set of points belonging to it. These points are computed by
means of appropriate 1D Edge Detection filters and are then combined together into a single higher-level
result.

Thus, a single Shape Fitting filter's work consists of the following steps:

1. Scan segments preparationScan segments preparation 3 a series of segments is prepared. The number, length and orientations
of the segments are computed from the filter's parameters.

2. Points extractionPoints extraction 3 points that should belong to the object being fitted are extracted using
(internally) a proper 1D Edge Detection filter (e.g. ScanSingleEdge in FitCircleToEdges) along each of
the scan segments as the scan path.

3. Object fittingObject fitting 3 the final result is computed with the use of a technique that allows fitting an
object to a set of points. In this step, a filter from Geometry 2D Fitting is internally used (e.g.
FitCircleToPoints in FitCircleToEdges). An exception to the rule is path fitting. No Geometry 2D
Fitting filter is needed there, because the found points serve themselves as the output path
characteristic points.

ToolsetToolset

The typical usage of the shape fitting method encompasses two distinct functions. One of the
CreateObjectFittingMapCreateObjectFittingMap functions (e.g. CreateCircleFittingMapCreateCircleFittingMap) has to be used before any other Shape
Fitting function. The special functions create a fitting map consisting of the scan segments. The fitting
map is then passed as an input to other functions and, because it generally must be created only once for
a whole series of fitting, this strategy speeds up the computations considerably. However, the fitting map
must be created before every fitting when inFittingFieldAlignmentinFittingFieldAlignment parameter of the
CreateObjectFittingMapCreateObjectFittingMap function is not Nil.

A sample program is shown below:

The scan segments are created
according to the fitting field
and other parameters (e.g.

inScanCountinScanCount).

ScanSingleEdge (or another proper
1D Edge Detection filter) is

performed.

A segment is fitted to the
obtained points.

The scan segments are created
according to the fitting field
and other parameters (e.g.

inScanCountinScanCount).

ScanSingleEdge (or another proper
1D Edge Detection filter) is

performed.

A segment is fitted to the
obtained points.

https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/FitCircleToPoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html

// Precompute CircleFittingMap before loop.

avl::CreateCircleFittingMap

(

 sampleImage,

 CircleFittingField(expectedCircle, 20.0f),

 NIL,

 10,

 1,

 SamplingParams(InterpolationMethod::Bilinear, 1.0f, atl::NIL),

 circleFittingMap

);

while (true)

{

 Image image;

 atl::Conditional<avl::Circle2D> outCircle;

 GetImageFromCamera(image); // Get images from a camera.

 avl::FitCircleToEdges // Perform fitting.

 (

 image,

 circleFittingMap,

 EdgeScanParams(),

 Selection::Best,

 NIL,

 0.1f,

 CircleFittingMethod::AlgebraicPratt,

 NIL,

 outCircle

);

 if (outCircle != NIL)

 {

 // Process results.

 }

}

ParametersParameters

Because of the internal use of 1D Edge Detection filters and Geometry 2D Fitting filters, all parameters
known from them are also present in Shape Fitting filters interfaces.

Beside these, there are also a few parameters specific to the subject of shape fitting. The inScanCountinScanCount
parameter controls the number of the scan segments. However, not all of the scans have to succeed in order
to regard the whole fitting process as being successful. The inMaxIncompletenessinMaxIncompleteness parameter determines
what fraction of the scans may fail.

FitCircleToEdges performed on the sample image with inMaxIncompletenessinMaxIncompleteness = 0.25. Although two scans have
ended in failure, the circle has been fitted successfully.

The path fitting functions have some additional parameters, which help to control the output path shape.
These parameters are:

inMaxDeviationDeltainMaxDeviationDelta 3 it defines the maximal allowed difference between deviations of consecutive
points of the output path from the corresponding input path points; if the difference between
deviations is greater, the point is considered to be not found at all.

inMaxInterpolationLengthinMaxInterpolationLength 3 if some of the scans fail or if some of found points are classified to
be wrong according to another control parameters (e.g. inMaxDeviationDeltainMaxDeviationDelta), output path points
corresponding to them are interpolated depending on points in their nearest vicinity. No more than
inMaxInterpolationLengthinMaxInterpolationLength consecutive points can be interpolated, and if there exists a longer
series of points that would have to be interpolated, the fitting is considered to be unsuccessful. The
exception to this behavior are points which were not found on both ends of the input path. Those are
not part of the result at all.

FitPathToEdges performed on the sample image with inMaxDeviationDeltainMaxDeviationDelta = 2 and
inMaxInterpolationLengthinMaxInterpolationLength = 3. Blue points are the points that were interpolated. If

inMaxInterpolationLengthinMaxInterpolationLength value was less than 2, the fitting would have failed.

https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitPathToEdges.html

Template MatchingTemplate Matching

IntroductionIntroduction

Template Matching is a high-level machine vision technique that
identifies the parts on an image that match a predefined template.
Advanced template matching algorithms allow to find occurrences of the
template regardless of their orientation and local brightness.

Template Matching techniques are flexible and relatively straightforward
to use, which makes them one of the most popular methods of object
localization. Their applicability is limited mostly by the available
computational power, as identification of big and complex templates can
be time-consuming.

ConceptConcept

Template Matching techniques are expected to address the following need: provided a reference image of an
object (the template image) and an image to be inspected (the input image) we want to identify all input
image locations at which the object from the template image is present. Depending on the specific problem
at hand, we may (or may not) want to identify the rotated or scaled occurrences.

We will start with a demonstration of a naive Template Matching method, which is insufficient for real-
life applications, but illustrates the core concept from which the actual Template Matching algorithms
stem from. After that we will explain how this method is enhanced and extended in advanced Grayscale-Grayscale-
based Matchingbased Matching and Edge-based MatchingEdge-based Matching routines.

Naive Template MatchingNaive Template Matching

Imagine that we are going to inspect an image of a plug and our goal is to find its pins. We are provided
with a template image representing the reference object we are looking for and the input image to be
inspected.

We will perform the actual search in a rather straightforward way 3 we will position the template over the
image at every possible location, and each time we will compute some numeric measure of similarity between
the template and the image segment it currently overlaps with. Finally we will identify the positions that
yield the best similarity measures as the probable template occurrences.

Image CorrelationImage Correlation

One of the subproblems that occur in the specification above is calculating the similarity measure of the
aligned template image and the overlapped segment of the input image, which is equivalent to calculating a
similarity measure of two images of equal dimensions. This is a classical task, and a numeric measure of
image similarity is usually called image correlation.

Cross-CorrelationCross-Correlation

The fundamental method of calculating the image correlation is
so called cross-correlation, which essentially is a simple sum
of pairwise multiplications of corresponding pixel values of
the images.

Though we may notice that the correlation value indeed seems
to reflect the similarity of the images being compared, cross-
correlation method is far from being robust. Its main drawback
is that it is biased by changes in global brightness of the
images - brightening of an image may sky-rocket its cross-correlation with another image, even if the
second image is not at all similar.

Normalized Cross-CorrelationNormalized Cross-Correlation

Normalized cross-correlation is an enhanced version of the classic cross-
correlation method that introduces two improvements over the original one:

The results are invariant to the global brightness changes, i.e.
consistent brightening or darkening of either image has no effect on
the result (this is accomplished by subtracting the mean image
brightness from each pixel value).

The final correlation value is scaled to [-1, 1] range, so that NCC of
two identical images equals 1.0, while NCC of an image and its
negation equals -1.0.

Template image Input image

Image1Image1 Image2Image2 Cross-CorrelationCross-Correlation

19404780

23316890

24715810

Image1Image1 Image2Image2 NCCNCC

-0.417

0.553

0.844

Template Correlation ImageTemplate Correlation Image

Let us get back to the problem at hand. Having introduced the Normalized Cross-Correlation - robust
measure of image similarity - we are now able to determine how well the template fits in each of the
possible positions. We may represent the results in a form of an image, where brightness of each pixels
represents the NCC value of the template positioned over this pixel (black color representing the minimal
correlation of -1.0, white color representing the maximal correlation of 1.0).

Identification of MatchesIdentification of Matches

All that needs to be done at this point is to decide which points of the template correlation image are
good enough to be considered actual matches. Usually we identify as matches the positions that
(simultaneously) represent the template correlation:

stronger that some predefined threshold value (i.e stronger that 0.5)

locally maximal (stronger that the template correlation in the neighboring pixels)

SummarySummary

It is quite easy to express the described method in Aurora Vision Studio - we will need just two built-in
filters. We will compute the template correlation image using the
ImageCorrelationImage filter, and then identify the matches using
ImageLocalMaxima - we just need to set the inMinValueinMinValue parameter
that will cut-off the weak local maxima from the results, as
discussed in previous section.

Though the introduced technique was sufficient to solve the problem
being considered, we may notice its important drawbacks:

Template occurrences have to preserve the orientation of the
reference template image.

The method is inefficient, as calculating the template correlation image for medium to large images is
time consuming.

In the next sections we will discuss how these issues are being addressed in advanced template matching
techniques: Grayscale-based MatchingGrayscale-based Matching and Edge-based MatchingEdge-based Matching.

Grayscale-based Matching, Edge-based MatchingGrayscale-based Matching, Edge-based Matching

Grayscale-based MatchingGrayscale-based Matching is an advanced Template Matching algorithm that extends the original idea of
correlation-based template detection enhancing its efficiency and allowing to search for template
occurrences regardless of its orientation. Edge-based MatchingEdge-based Matching enhances this method even more by
limiting the computation to the object edge-areas.

In this section we will describe the intrinsic details of both algorithms. In the next section (FilterFilter
toolsettoolset) we will explain how to use these techniques in Aurora Vision Studio.

Image PyramidImage Pyramid

Image Pyramid is a series of images, each image being a result of downsampling (scaling down, by the
factor of two in this case) of the previous element.

Template image Input image Template correlation image

Areas of template correlation
above 0.75

Points of locally maximal
template correlation

Points of locally maximal
template correlation above 0.75

Level 0 (input image) Level 1 Level 2

https://docs.adaptive-vision.com/5.6/avl/functions/ImageMetrics/ImageCorrelationImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageFeatures/ImageLocalMaxima.html

Pyramid ProcessingPyramid Processing

Image pyramids can be applied to enhance the efficiency of the correlation-based template detection. The
important observation is that the template depicted in the reference image usually is still discernible
after significant downsampling of the image (though, naturally, fine details are lost in the process).
Therefore we can identify match candidates in the downsampled (and therefore much faster to process) image
on the highest level of our pyramid, and then repeat the search on the lower levels of the pyramid, each
time considering only the template positions that scored high on the previous level.

At each level of the pyramid we will need appropriately downsampled picture of the reference template,
i.e. both input image pyramid and template image pyramid should be computed.

Grayscale-based MatchingGrayscale-based Matching

Although in some of the applications the orientation of the objects is uniform and fixed (as we have seen
in the plug example), it is often the case that the objects that are to be detected appear rotated. In
Template Matching algorithms the classic pyramid search is adapted to allow multi-angle matching, i.e.
identification of rotated instances of the template.

This is achieved by computing not just one template image pyramid, but a set of pyramids - one for each
possible rotation of the template. During the pyramid search on the input image the algorithm identifies
the pairs (template position, template orientation) rather than sole template positions. Similarly to the
original schema, on each level of the search the algorithm verifies only those (position, orientation)
pairs that scored well on the previous level (i.e. seemed to match the template in the image of lower
resolution).

The technique of pyramid matching together with multi-angle search constitute the Grayscale-basedGrayscale-based
Template MatchingTemplate Matching method.

Edge-based MatchingEdge-based Matching

Edge-based Matching enhances the previously discussed Grayscale-based Matching using one crucial
observation - that the shape of any object is defined mainly by the shape of its edges. Therefore, instead
of matching of the whole template, we could extract its edges and match only the nearby pixels, thus
avoiding some unnecessary computations. In common applications the achieved speed-up is usually
significant.

Matching object edges instead of an object as
a whole requires slight modification of the
original pyramid matching method: imagine we
are matching an object of uniform color
positioned over uniform background. All of
object edge pixels would have the same
intensity and the original algorithm would
match the object anywhere wherever there is
large enough blob of the appropriate color,
and this is clearly not what we want to
achieve. To resolve this problem, in Edge-
based Matching it is the gradient direction
(represented as a color in HSV space for the
illustrative purposes) of the edge pixels, not their intensity, that is matched.

Filter ToolsetFilter Toolset

Aurora Vision Studio provides a set of filters implementing both Grayscale-based MatchingGrayscale-based Matching and Edge-Edge-
based Matchingbased Matching. For the list of the filters see Template Matching filters.

As the template image has to be preprocessed before the pyramid matching (we need to calculate the
template image pyramids for all possible rotations and scales), the algorithms are split into two parts:

Model CreationModel Creation - in this step the template image pyramids are calculated and the results are stored
in a model - atomic object representing all the data needed to run the pyramid matching.

MatchingMatching - in this step the template model is used to match the template in the input image.

Such an organization of the processing makes it possible to compute the model once and reuse it multiple
times.

Available FiltersAvailable Filters

For both Template Matching methods two filters are provided, one for each step of the algorithm.

Level 0 (template reference
image)

Level 1 Level 2

Template image Input image Results of multi-angle matching

Grayscale-based Matching:Grayscale-based Matching:

Edge-based Matching:Edge-based Matching:

Different kinds of template pyramids used in Template Matching algorithms.

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/index.html

Please note that the use of CreateGrayModel and CreateEdgeModel2 filters will only be necessary in more
advanced applications. Otherwise it is enough to use a single filter of the MatchingMatching step and create the
model by setting the inGrayModel or inEdgeModel parameter of the filter. The CreateEdgeModel2 and
LocateMultipleObjects_Edges2 filters are preferred over CreateEdgeModel1 and LocateMultipleObjects_Edges1
because they are newer, more advanced versions with more capabilities.

The main challenge of applying the Template Matching technique lies in careful adjustment of filter
parameters, rather than designing the program structure.

Advanced Application SchemaAdvanced Application Schema

There are several kinds of advanced applications, for which the interactive GUI for Template Matching is
not enough and the user needs to use the CreateGrayModel or CreateEdgeModel2 filter directly. For example:

1. When creating the model requires non-trivial image preprocessing.

2. When we need an entire array of models created automatically from a set of images.

3. When the end user should be able to define his own templates in the runtime application (e.g. by
making a selection on an input image).

Schema 1Schema 1: Model Creation in a Separate Program: Model Creation in a Separate Program

For the cases 1 and 2 it is advisable to implement model creation in a separate Task macrofilter, save the
model to an AVDATA file and then link that file to the input of the matching filter in the main program:

Grayscale-based MatchingGrayscale-based Matching Edge-based MatchingEdge-based Matching

ModelModel
Creation:Creation:

Matching:Matching:

Model Creation:Model Creation:

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_Edges2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel1.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/LocateMultipleObjects_Edges1.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateGrayModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html

When this program is ready, you can run the "CreateModel" task as a program at any time you want to
recreate the model. The link to the data file on the input of the matching filter does not need any
modifications then, because this is just a link and what is being changed is only the file on disk.

Schema 2:Schema 2: Dynamic Model Creation Dynamic Model Creation

For the case 3, when the model has to be created dynamically, both the model creating filter and the
matching filter have to be in the same task. The former, however, should be executed conditionally, when a
respective HMI event is raised (e.g. the user clicks an ImpulseButton or makes some mouse action in a
VideoBox). For representing the model, a register of EdgeModel2? type should be used, that will store the
latest model. Here is an example realization with the model being created from a predefined box on an
input image when a button is clicked in the HMI:

Model CreationModel Creation

Height of the PyramidHeight of the Pyramid

The inMaxPyramidLevelinMaxPyramidLevel parameter determines the number of levels of the pyramid matching and should be
set to the largest number for which the template is still recognizable on the highest pyramid level. This
value should be selected through interactive experimentation using the diagnostic output
diagTemplatePyramiddiagTemplatePyramid (Grayscale-based Matching) or diagEdgePyramiddiagEdgePyramid (Edge-based Matching).

Main Program:Main Program:

The inMinPyramidLevelinMinPyramidLevel parameter determines the lowest pyramid level that is generated during creation
phase and the lowest pyramid level that the occurrences are tracked to during location phase. If the
parameter is set to lower value in location than in creation, the missing levels are generated dynamically
by the locating filter. This approach leads to much faster creation, but a bit slower location.

In the following example the inMaxPyramidLevelinMaxPyramidLevel value of 4 would be too high (for both methods), as the
structure of the template is entirely lost on this level of the pyramid. Also the value of 3 seems a bit
excessive (especially in case of Edge-based Matching) while the value of 2 would definitely be a safe
choice.

Angle RangeAngle Range

The inMinAngleinMinAngle, inMaxAngleinMaxAngle parameters determine the range of template orientations that will be
considered in the matching process. For instance (values in brackets represent the pairs of inMinAngleinMinAngle,
inMaxAngleinMaxAngle values):

(-180.0, 180.0): all rotations are considered (default value)

(-15.0, 15.0): the template occurrences are allowed to deviate from the reference template orientation
at most by 15.0 degrees (in each direction)

(0.0, 0.0): the template occurrences are expected to preserve the reference template orientation

Wide range of possible orientations introduces significant amount of overhead (both in memory usage and
computing time), so it is advisable to limit the range whenever possible, especially if different scales
are also involved. The number of rotations created can be further manipulated with inAnglePrecisioninAnglePrecision
parameter. Decreasing it results in smaller models and smaller execution times, but can also lead to
objects that are slightly less accurate.

Scale RangeScale Range

The inMinScaleinMinScale, inMaxScaleinMaxScale parameters determine the range of template scales that will be considered in
the matching process. It enables locating objects that are slightly smaller or bigger than the object used
during model creation.

Wide range of possible scales introduces significant amount of overhead (both in memory usage and
computing time), so it is advisable to limit the range whenever possible. The number of scales created can
be further manipulated with inScalePrecisioninScalePrecision parameter. Decreasing it results in smaller models and
smaller execution times, but can also lead to objects that are slightly less accurate.

Edge Detection Settings (only Edge-based Matching)Edge Detection Settings (only Edge-based Matching)

The inEdgeThresholdinEdgeThreshold, inEdgeHysteresisinEdgeHysteresis parameters of CreateEdgeModel2 filter determine the settings of
the hysteresis thresholding used to detect edges in the template image. The lower the inEdgeThresholdinEdgeThreshold
value, the more edges will be detected in the template image. These parameters should be set so that all
the significant edges of the template are detected and the amount of redundant edges (noise) in the result
is as limited as possible. Similarly to the pyramid height, edge detection thresholds should be selected
through interactive experimentation using the outEdgesoutEdges output and the diagnostic output diagEdgePyramiddiagEdgePyramid
- this time we need to look only at the picture at the lowest level.

The CreateEdgeModel2 filter will not allow to create a model in which no edges were detected at the top of
the pyramid (which means not only some significant edges were lost, but all of them), yielding an error in
such case. Whenever that happens, the height of the pyramid, or the edge thresholds, or both, should be
reduced.

MatchingMatching

The inMinScoreinMinScore parameter determines how permissive the algorithm will be in verification of the match
candidates - the higher the value the less results will be returned. This parameter should be set through
interactive experimentation to a value low enough to assure that all correct matches will be returned, but
not much lower, as too low value slows the algorithm down and may cause false matches to appear in the
results.

Tips and Best PracticesTips and Best Practices

Level 0Level 0 Level 1Level 1 Level 2Level 2 Level 3Level 3 Level 4Level 4

Grayscale-basedGrayscale-based
MatchingMatching

(diagTemplatePyramid):(diagTemplatePyramid):

Edge-based MatchingEdge-based Matching
(diagEdgePyramid):(diagEdgePyramid):

(15.0, 30.0) - excessive amount
of noise

(40.0, 60.0) - OK (60.0, 70.0) - significant edges
lost

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/CreateEdgeModel2.html

How to Select a Method?How to Select a Method?

For vast majority of applications the Edge-based MatchingEdge-based Matching method will be both more robust and more
efficient than Grayscale-based MatchingGrayscale-based Matching. The latter should be considered only if the template being
considered has smooth color transition areas that are not defined by discernible edges, but still should
be matched.

How to even further upgrade the results of How to even further upgrade the results of Edge-based MatchingEdge-based Matching??

You can use EnhanceMultipleObjectMatches filter or EnhanceSingleObjectMatch filter to fine-tune the
results. A great example of usage is presented in the CreateGoldenTemplate2 filter.

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/EnhanceMultipleObjectMatches.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/EnhanceSingleObjectMatch.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CreateGoldenTemplate2.html

Using Local Coordinate SystemsUsing Local Coordinate Systems

IntroductionIntroduction

Local coordinate systems provide a convenient means for inspecting objects that may appear at different
positions on the input image. Instead of denoting coordinates of geometrical primitives in the absolute
coordinate system of the image, local coordinate systems make it possible to use coordinates local to the
object being inspected. In an initial step of the program the object is located and a local coordinate
system is set accordingly. Other tools can then be configured to work within this coordinate system, and
this makes them independent of the object translation, rotation and scale.

Two most important notions here are:

CoordinateSystem2DCoordinateSystem2D 3 a structure consisting of Origin (Point2D), Angle (real number) and Scale (real
number), defining a relative Cartesian coordinate system with its point (0, 0) located at the Origin
point of the parent coordinate system (usually an image).

AlignmentAlignment 3 the process of transforming geometrical primitives from a local coordinate system to the
coordinates of an image (absolute), or data defining such transformation. An alignment is usually
represented with the CoordinateSystem2DCoordinateSystem2D data type.

Creating a Local Coordinate SystemCreating a Local Coordinate System

There are two standard ways of setting a local coordinate system:

1. With Template Matching filters it is straightforward as the filters have outObjectAlignment(s)outObjectAlignment(s)
outputs, which provide local coordinate systems of the detected objects.

2. With one of the CreateCoordinateSystem functions, which allow for creating local coordinate systems
manually at any location, and with any rotation and scale. In most typical scenarios of this kind, the
objects are located with 1D Edge Detection, Shape Fitting or Blob Analysis tools.

Using a Local Coordinate SystemUsing a Local Coordinate System

After a local coordinate system is created it can be used in the subsequent image analysis tools. The high
level tools available in Aurora Vision Studio have an inAlignmentinAlignment (or similar) input, which just needs to
be connected to the port of the created local coordinate system. At this point, you should first run the
program at least to the point where the coordinate system is computed, and then the geometrical primitives
you will be defining on other inputs, will be automatically aligned with the position of the inspected
object.

Example 1: Alignment from Template MatchingExample 1: Alignment from Template Matching

To use object alignment from a Template Matching filter, you need to connect the AlignmentAlignment ports:

Template Matching and an aligned circle fitting.

When you execute the template matching filter and enter the editor of the inFittingFieldinFittingField input of the
FitCircleToEdges filter, you will have the local coordinate system already selected (you can also select
it manually) and the primitive you create will have relative coordinates:

https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DConstructions/index.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/ShapeFitting.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/functions/TemplateMatching/index.html
https://docs.adaptive-vision.com/5.6/avl/functions/ShapeFitting/FitCircleToEdges.html

Editing an expected circle in a local coordinate system.

During program execution this geometrical primitive will be automatically aligned with the object
position. Moreover, you will be able to adjust the input primitive in the context of any input image,
because they will be always displayed aligned. Here are example results:

Example 2: Alignment from Blob AnalysisExample 2: Alignment from Blob Analysis

In many applications objects can be located with methods simpler and faster than Template Matching 3 like
1D Edge Detection, Shape Fitting or Blob Analysis. In the following example we will show how to create a
local coordinate system from two blobs:

Two holes clearly define the object location.

In the first step we detect the blobs (see also: Blob Analysis) and their centers:

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/1DEdgeDetection.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/ShapeFitting.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html

In the second step we sort the centers by the X coordinate and create a coordinate system "from segment"
defined by the two points (CreateCoordinateSystemFromSegment). The segment defines both the origin and the
orientation. Having this coordinate system ready, we connect it to the inScanPathAlignmentinScanPathAlignment input of
ScanExactlyNRidges, which will measure the distance between two insets. The measurement will work
correctly irrespective of the object position (mind the expanded structure inputs and outputs):

Manual AlignmentManual Alignment

In some cases the filter you will need to use with a local coordinate system will have no appropriate
inAlignmentinAlignment input. In such cases the solution is to transform the primitive manually with filters like
AlignPoint, AlignCircle, AlignRectangle. These filters accept a geometrical primitive defined in a local
coordinate system, and the coordinate system itself, and return the same primitive, but with absolute
coordinates, i.e. aligned to the coordinate system of an image.

A very common case is with ports of type Region, which is pixel-precise and, while allowing for creation
of arbitrary shapes, cannot be directly transformed. In such cases it is advisable to use the
CreateRectangleRegion filter and define the region-of-interest at inRectangleinRectangle. The filter, having also
the inRectangleAlignmentinRectangleAlignment input connected, will return a region properly aligned with the related object
position. Some ready-made tools, e.g. CheckPresence_Intensity, use this approach internally.

Not Mixing Local Coordinate SystemsNot Mixing Local Coordinate Systems

It is important to keep in mind that geometrical primitives that appear in different places of a program
may belong to different coordinate systems. When such different objects are combined together (e.g. with a
filter like SegmentSegmentIntersection) or placed on a single data preview, the results will be
meaningless or at least confusing. Thus, only objects belonging to the same coordinate system should be
combined. In particular, when placing primitives on a preview on top of an image, only aligned primitives
(with absolute coordinates) should be used.

As a general rule, image analysis filters of Aurora Vision Studio accept primitives in local coordinate
systems on inputs, but outputs are always aligned (i.e. in the absolute coordinate system). In particular,
many filters that align input primitives internally also have outputs that contain the input primitive
transformed to the absolute coordinate system. For example, the ScanSingleEdge filters has a inScanPathinScanPath
input defined in a local coordinate system and a corresponding outAlignedScanPathoutAlignedScanPath output defined in the
absolute coordinate system:

The ScanSingleEdge filter with a pair of ports: inScanPathinScanPath and outAlignedScanPathoutAlignedScanPath, belonging to
different coordinate systems.

Filters detecting blobs and their centers.

The result of blob detection.

Filters creating a coordinate systems and performing
an aligned measurement.

Created local coordinate system and an aligned
measurement.

https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DConstructions/CreateCoordinateSystemFromSegment.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanExactlyNRidges.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/AlignPoint.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/AlignCircle.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DSpatialTransforms/AlignRectangle.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionBasics/CreateRectangleRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CheckPresence_Intensity.html
https://docs.adaptive-vision.com/5.6/avl/functions/Geometry2DIntersections/SegmentSegmentIntersection.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html
https://docs.adaptive-vision.com/5.6/avl/functions/1DEdgeDetection/ScanSingleEdge.html

Result of data extraction using OCR.

Optical Character Recognition - traditional methodOptical Character Recognition - traditional method

IntroductionIntroduction

Optical Character Recognition (OCR) is a machine vision task
consisting in extracting textual information from images.

State of the art techniques for OCR offer high accuracy of text
recognition and invulnerability to medium grain graphical noises.
They are also applicable for recognition of characters made using
dot matrix printers. This technology gives satisfactory results for
partially occluded or deformed characters.

Please be informed that this article is referring to thePlease be informed that this article is referring to the
traditional OCR method. Nowadays, we strongly recommendtraditional OCR method. Nowadays, we strongly recommend
using Deep Learning OCR tools, which are much faster andusing Deep Learning OCR tools, which are much faster and
more efficient than the traditional ones in many cases. more efficient than the traditional ones in many cases. YouYou
can find more information about the Deep Learning toolscan find more information about the Deep Learning tools
herehere..

Efficiency of the traditional recognition process mostly depends on the quality of text segmentation
results. Most of the recognition cases can be done using a provided set of recognition models. In other
cases a new recognition model can be easily prepared.

ConceptConcept

OCR technology is widely used for automatic data reading from various sources. It is especially used to
gather data from documents and printed labels.

In the first part of this manual usage of high level filters will be described.

The second part of this manual shows how to use standard OCR models provided with Aurora Vision Studio. It
also shows how to prepare an image to get best possible results of recognition.

The third part describes the process of preparing and training OCR models.

The last part presents an example program that reads text from images.

Using high level Optical Character Recognition filtersUsing high level Optical Character Recognition filters

Aurora Vision Studio offers a convenient way to extract a text region from an image and then read it using
a trained OCR classifier.

The typical OCR application consists of the following steps:

1. Find text positionFind text position 3 locate the text position using template matching,

2. Extract textExtract text 3 use the filter ExtractText to distinct the text form the background and perform its
segmentation,

3. Read textRead text 3 recognizing the extracted characters with the ReadText filter.

Example OCR application using high level filters.

Details on Optical Character Recognition techniqueDetails on Optical Character Recognition technique

Reading text from imagesReading text from images

In order to achieve the most accurate recognition it is necessary to perform careful text extraction and
segmentation. The overall process of acquiring text from images consists of the following steps:

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/DeepLearning.html#read_characters
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/ExtractText.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/ReadText.html

1. Getting text location,

2. Extracting text from the background,

3. Segmenting text,

4. Using prepared OCR models,

5. Character recognition,

6. Interpreting results,

7. Verifying results.

The following sections will introduce methods used to detect and recognize text from images. For better
understanding of this guide the reader should be familiar with basic blob analysis techniques.

Getting text locationGetting text location

In general, text localization tasks can be divided into three cases:

1. The location of text is fixed and it is described by boxes called masks. For example, the personal
identification card is produced according to the formal specification. The location of each data field
is known. A well calibrated vision system can take images in which the location of the text is almost
constant.

An example image with text masks.

2. Text location is not fixed, but it is related to a characteristic element on the input images or to a
special marker (an optical mark). To get the location of the text the optical mark has to be found.
This can be done with template matching, 1D edge detection or other technique.

3. The location of text is not specified, but characters can be easily separated from the background with
image thresholding. The correct characters can then be found with blob analysis techniques.

Getting text from a bottle cap.

When the text location is specified, the image under analysis must be transformed to make text lines
parallel to the X-axis. This can be done with RotateImage, CropImageToRectangle or ImageAlongPath filters.

Extracting text from the backgroundExtracting text from the background

A major complication during the process of text extraction may be uneven light. Some techniques like light
normalization or edge sharpening can help in finding characters. The example of light normalization can be
found in the example project Examples\Tablets. The presentation of image sharpening using the Fourier
transform can be found in the Examples\Fourier example.

Original image.

Image after light normalization.

Image after low-frequency image damping using the Fourier transform.

https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/BlobAnalysis.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/RotateImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/ImageAlongPath.html

Text extraction is based on image binarization techniques. To extract characters, filters like
ThresholdToRegion and ThresholdToRegion_Dynamic can be used. In order to avoid recognizing regions which
do not include characters, it is advisable to use filters based on blob area.

Sample images with uneven light.

Results of ThresholdToRegion and ThresholdToRegion_Dynamic on
images with uneven light.

At this point the extracted text region is prepared for segmentation.

Segmenting textSegmenting text

Text region segmentation is a process of splitting a region into lines and individual characters. The
recognition step is only possible if each region contains a single character.

Firstly, if there are multiple lines of text, separation into lines must be performed. If the text
orientation is horizontal, simple region dilation can be used followed by splitting the region into blobs.
In other cases the text must be transformed, so that the lines become horizontal.

The process of splitting text into lines using region morphology filters.

When text text lines are separated, each line must be split into individual characters. In a case when
characters are not made of diacritic marks and characters can be separated well, the filter
SplitRegionIntoBlobs can be used. In other cases the filter SplitRegionIntoExactlyNCharacters or
SplitRegionIntoMultipleCharacters must be used.

Character segmentation using SplitRegionIntoBlobs.

Character segmentation using SplitRegionIntoMultipleCharacters.

Next, the extracted characters will be translated from graphical representation to textual representation.

Using prepared OCR modelsUsing prepared OCR models

Standard OCR models are typically located in the disk directory C:\ProgramData\Aurora Vision\{Aurora
Vision Product Name}\PretrainedFonts.

The table below shows the list of available font models:

https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageThresholding/ThresholdToRegion_Dynamic.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SplitRegionIntoExactlyNCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionGlobalTransforms/SplitRegionIntoBlobs.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SplitRegionIntoMultipleCharacters.html

Character recognitionCharacter recognition

Aurora Vision Library offers two types of character classifiers:

1. Classifier based on multi-layer perceptron (MLP).

2. Classifier based on support vector machines (SVM).

Both of the classifiers are stored in the OcrModel type. To get a text from character regions use the
RecognizeCharacters filter, shown on the image below:

The first and the most important step is to choose the appropriate character normalization size. The
internal classifier recognizes characters using their normalized form. More information about character
normalization process will be provided in the section describing the process of classifier training.

The character normalization allows to classify characters with different sizes. The parameter
inCharacterSizeinCharacterSize defines the size of a character before the normalization. When the value is not provided,
the size is calculated automatically using the character bounding box.

FontFont
namename

FontFont
typefacetypeface

SetSet
namename

CharactersCharacters

OCRA monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-
/+

OCRB monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-
/+

MICR monospaced ABC09 ABC0123456789

Computer monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-
/+

DotMatrix monospaced

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ+-./

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ+-
01234556789./

09 01234556789.+-/

Regular proportional

AZ ABCDEFGHIJKLMNOPQRSTUVWXYZ.-/

AZ_small abcdefghijklmnopqrstuvwxyz.-/

09 0123456789.-/+

AZ09 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-
/+

https://docs.adaptive-vision.com/5.6/avl/datatypes/OcrModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/RecognizeCharacters.html

Next, character sorting order must be chosen. The default order is from left to right.

If the input text contains spaced characters, the value of inMinSpaceWidthinMinSpaceWidth input must be set. This value
indicates the minimal distance between two characters between which a space will be inserted.

Character recognition provides the following information:

1. the read text as a string (outCharactersoutCharacters),

2. an array of character recognition scores (outScoresoutScores),

3. an array of recognition candidates for each character (outCandidatesoutCandidates).

Interpreting resultsInterpreting results

The table below shows recognition results for characters extracted from the example image. An unrecognized
character is colored in red.

In this example the letter P was not included in the training set. In effect, the OCR model was unable to
recognize the representation of the P letter. The internal classifier was trying to select most similar
known character.

Verifying resultsVerifying results

After reading result should be check if text follows constraints. It can be done using simple string
manipulation.

Preparation of the OCR modelsPreparation of the OCR models

An OCR model consists of an internal statistical tool called a classifier and a set of character data.
There are two kinds of classifiers used to recognize characters. The first classifier type is based on the
multilayer perceptron classifier (MLP) and the second one uses support vector machines (SVM). For further
details please refer to the documentation of the MLP_Init and the SVM_Init filters. Each model must be
trained before it can be used.

The process of OCR model training consists of the following steps:

Character presentationCharacter presentation
CharactersCharacters

afterafter
normalizationnormalization

DescriptionDescription

The appropriate character
size is chosen.

The size of character is
too small.

Too much information about
a character is lost because
of too large size has been
selected .

OriginalOriginal
charactercharacter

RecognizedRecognized
charactercharacter ScoreScore

CandidatesCandidates
(character and(character and

accuracy)accuracy)

(outCharacters)(outCharacters) (outScores)(outScores) (outCandidates)(outCandidates)

E E 1.00 E: 1.00

X X 1.00 X: 1.00

A A 1.00 A: 1.00

M M 1.00 M: 1.00

P RR 0.50 R: 0.90 B: 0.40

L L 1.00 L: 1.00

E E 1.00 E: 1.00

https://docs.adaptive-vision.com/5.6/avl/functions/MultilayerPerceptron/MLP_Init.html
https://docs.adaptive-vision.com/5.6/avl/functions/SupportVectorMachines/SVM_Init.html

Synthetic characters generated by means of a computer font.

Character samples acquired from a real usage.

1. preparation of the training data set,

2. selection of the normalization size and character features,

3. setup of the OCR model,

4. training of the OCR model,

5. saving results to a file.

When these steps are performed, the model is ready to use.

Preparation of the training data setPreparation of the training data set

Each classifier needs character samples in
order to begin the training process. To get
the best recognition accuracy, the training
character samples should be as similar as
possible to those which will be provided for
recognition. There are two possible ways to
obtain sample characters: (1) extraction of
characters from real images or (2) generation
of artificial characters using computer fonts.

In the perfect world the model should be
trained using numerous real samples. However,
sometimes it can be difficult to gather enough
real character samples. In this case character
samples should be generated by deforming the available samples. A classifier which was trained on a not
big enough data set can focus only on familiar character samples at the same time failing to recognize
slightly modified characters.

Example operations which are used to create new character samples:

1. region rotation (using the RotateRegion filter),

2. shearing (ShearRegion),

3. dilatation and erosion (DilateRegion, ErodeRegion),

4. addition of a noise.

The set of character samples deformed by: the region rotation, morphological transforms, shearing and
noises.

Note: Adding too many deformed characters to a training set will increase the training time of a model.

Note: Excessive deformation of character shape can result in classifier inability to recognize the learnt
character base. For example: if the training set contains a C character with too many noises, it can be
mistaken for O character. In this case the classifier will be unable to determine the base of a newly
provided character.

Each character sample must be stored in a structure of type CharacterSample. This structure consists of a
character region and its textual representation. To create an array of character samples use the
MakeCharacterSamples filter.

Selection of normalization size and character featuresSelection of normalization size and character features

The character normalization allows for reduction of the amount of data used in the character
classification. The other aim of normalization is to enable the classification process to recognize
characters of various sizes.

During normalization each character is resized into a size which was provided during the model
initialization. All further classifier operations will be performed on the resized (normalized)
characters.

Various size characters before and after the normalization process.

Selection of too large normalization size will increase training time of the OCR classifier. On the other
hand, too low size will result in loss of important character details. The selected normalization size
should be a compromise between classification time and the accuracy of recognition. For the best results,
a character size after normalization should be similar to its size before normalization.

During the normalization process some character details will be lost, e.g. the aspect ratio of a
character. In the training process, some additional information can be added, which can compensate for the
information loss in the normalization process. For further information please refer to the documentation
of the TrainOcr_MLP filter.

Training of the OCR modelTraining of the OCR model

There are two filters used to train each type of an OCR classifier. These filters require parameters which
describe the classifier training process.

Training of MLP classifier using TrainOcr_MLP. Training of SVM classifier using TrainOcr_SVM.

https://docs.adaptive-vision.com/5.6/avl/functions/RegionSpatialTransforms/RotateRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionSpatialTransforms/ShearRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/DilateRegion.html
https://docs.adaptive-vision.com/5.6/avl/functions/RegionMorphology/ErodeRegion.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/CharacterSample.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/MakeCharacterSamples.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_MLP.html
https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/TrainOcr_SVM.html

Saving the training resultsSaving the training results

After successful classifier training the results should be saved for future use. The function SaveOcrModel
should be used.

https://docs.adaptive-vision.com/5.6/avl/functions/OpticalCharacterRecognition/SaveOcrModel.html

Camera Calibration and World CoordinatesCamera Calibration and World Coordinates

Camera CalibrationCamera Calibration

Camera calibration, also known as camera resectioning, is a process of estimating parameters of a camera
model: a set of parameters that describe the internal geometry of image capture process. Accurate camera
calibration is is essential for various applications, such as multi-camera setups where images relate to
each other, removing geometric distortions due to lens imperfections, or precise measurement of real-world
geometric properties (positions, distances, areas, straightness, etc.).

The model to be used is chosen depending on the camera type (e.g. projective camera, telecentric camera,
line scan camera) and accuracy requirements. In a case of a standard projective camera, the model (known
as pinhole camera model) consists of focal length, principal point location and distortion parameters.

A few distortion model types are supported. The simplest - divisional - supports most use cases and has
predictable behaviour even when calibration data is sparse. Higher order models can be more accurate,
however they need a much larger dataset of high quality calibration points, and are usually needed for
achieving high levels of positional accuracy across the whole image - order of magnitude below 0.1 pix. Of
course this is only a rule of thumb, as each lens is different and there are exceptions.

The area scan camera models (pinhole or telecentric) contain only intrinsic camera parameters, and so it
does not change with camera repositioning, rotations, etc. Thanks to that, there is no need for camera
calibration in the production environment, the camera can be calibrated beforehand. As soon as the camera
has been assembled with the lens and lens adjustments (zoom/focus/f-stop rings) have been tightly locked,
the calibration images can be taken and camera calibration performed. Of course any modifications to the
camera-lens setup void the calibration parameters, even apparently minor ones such as removing the lens
and putting it back on the camera in seemingly the same position.

On the other hand the line scan model contains parameters of whole imaging setup, i.e. camera and a moving
element (usually a conveyor belt). Such approach, in contrast with area scan camera calibration, is
necessary as the moving element of line scan camera system is tightly bound within the image acquisition
geometry.

Camera model can be directly used to obtain an undistorted image (an image, which would have been taken by
a camera with the same basic parameters, but without lens distortion present), however for most use cases
the camera calibration is just a prerequisite to some other operation. For example, when camera is used
for inspection of planar surfaces (or objects lying on such surface), the camera model is needed to
perform a World Plane calibration (see World Plane - measurements and rectification section below).

In Aurora Vision Studio user will be prompted by a GUI when a camera calibration is needed to be
performed. Alternatively, filters responsible for camera calibration may be used directly:
CalibrateCamera_Pinhole, CalibrateCamera_Telecentric, CalibrateCamera_LineScan.

World Plane - Measurements and RectificationWorld Plane - Measurements and Rectification

Vision systems which are concerned with observation and inspection of planar (flat) surfaces, or objects
lying on such surfaces (e.g. conveyor belts) can take advantage of the image to world plane transform
mechanism of Aurora Vision Studio, which allows for:

Calculation of real world coordinates from locations on original image. This is crucial, for example,
for interoperability with external devices, such as industrial robots. Suppose a object is detected on
the image, and its location needs to be transmitted to the robot. The detected object location is
given in image coordinates, however the robot is operating in real world with different coordinate
system. A common coordinate system is needed, defined by a world plane.

Image rectification onto the world plane. This is needed when performing image analysis using original
image is not feasible (due to high degree of lens and/or perspective distortion). The results of
analysis performed on a rectified image can also be transformed to real-world coordinates defined by a
world plane coordinate system. Another use case is a multi-camera system 3 rectification of images
from all the cameras onto common world plane gives a simple and well defined relation between those
rectified images, which allows for easy superimposing or mosaic stitching.

The image below shows the image coordinate system. Image coordinates are denoted in pixels, with the
origin point (0, 0) corresponding to the top-left corner of the image. The X axis starts at the left edge
of an image and goes towards the right edge. The Y axis starts at the top of the image towards image
bottom. All image pixels have nonnegative coordinates.

A set of grid pictures for basic calibration. Note that high accuracy applications require denser grids
and higher amount of pictures. Also note that all grids are perpendicular to the optical axis of the

camera, so the focal length won't be calculated by the filter.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/CalibrateCamera_Pinhole.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/CalibrateCamera_Telecentric.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/CalibrateCamera_LineScan.html

Directions and pixel positions in image coordinates.

The world plane is a distinguished flat surface, defined in the real 3D world. It may be arbitrarily
placed with respect to the camera. It has a defined origin position and XY axes.

Images below present the concept of a world plane. First image presents an original image, as captured by
a camera that has not been mounted quite straight above the object of interest. The second image presents
a world plane, which has been aligned with the surface on which the object is present. This allows for
either calculation of world coordinates from pixel locations on original image, or image rectification, as
shown on the next images.

Object of interest as captured by an imperfectly positioned camera.

World plane coordinate system superimposed onto the original image.

In order to use the image to world plane transform mechanism of Aurora Vision Studio, appropriate UI
wizards are supplied:

For calculation of real world coordinates from locations on original image 3 use a wizard associated
with the inTransforminTransform input of ImagePointToWorldPlane filter (or other from ImageObjectsToWorldPlane
group).

For image rectification onto the world plane 3 use a wizard associated with the inRectificationMapinRectificationMap
input of RectifyImage filter.

Although using UI wizards is the recommended course of action, the most complicated use cases may need a
direct use of filters, in such a case following steps are to be performed:

1. Camera calibration 3 this step is highly recommended to achieve accurate results, although not
strictly necessary (e.g. when lens distortion errors are insignificant).

2. World plane calibration 3 the CalibrateWorldPlane_* filters compute a RectificationTransform, which
represents image to world plane relation

3. The image to world plane relation then can be used to:

Calculate of real world coordinates from locations on original image, and vice versa, see
ImagePointToWorldPlane, WorldPlanePointToImage or similar filters (from ImageObjectsToWorldPlane
or WorldPlaneObjectsToImage groups).

Perform image rectification onto the world plane, see CreateRectificationMap_* filters.

There are different use cases of world coordinates calculation and image rectification:

Calculating world coordinates from pixel locations on original image without image rectification. This
approach uses transformation output for example by CalibrateWorldPlane_* to calculate real world
coordinates with ImageObjectsToWorldPlane_*

Second scenario is very similar to the first one with the difference of using image rectification. In
this case, after performing analysis on an rectified image (i.e. image remapped by RectifyImage), the
locations can be transformed to a common coordinate system given by the world plane by using the
rectified image to world plane relation. It is given by auxiliary output outRectifiedTransformoutRectifiedTransform of
RectifyImage filter. Notice that the rectified image to world plane relation is different than
original image to world plane relation.

Last use case is to perform image rectification and rectified image analysis without its features
recalculation to real world coordinates.

Notes:

Image to world plane transform is still a valid mechanism for telecentric cameras. Is such a case, the
image would be related to world plane by an affine transform.

Camera distortion is automatically accounted for in both world coordinate calculations and image
rectification.

The spatial map generated by CreateRectificationMap_* filters can be thought of as a map performing
image undistortion followed by a perspective removal.

Extraction of Calibration GridsExtraction of Calibration Grids

Both camera calibration and image to world plane transform calculation use extracted calibration grids in
the form of array of image points with grid indices, i.e. annotated points.

Note that the real-world coordinates of the grids are 2D, because the relative coordinate of any point on

Image to world plane coordinate calculation. Image rectification, with cropping to an area from
point (0,0) to (5,5) in world coordinates.

Example of taking world plane measurements on the rectified image. Left: original image, as captured by
a camera, with mild lens distortion. Right: rectified image with annotated length measurement.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/ImagePointsToWorldPlane.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/ImagePointToWorldPlane.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/RectificationTransform.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/ImagePointToWorldPlane.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/WorldPlanePointToImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html

the flat grid is .

Aurora Vision Studio provides extraction filters for a few standard grid formats (see:
DetectCalibrationGrid_Chessboard and DetectCalibrationGrid_Circles).

Using custom grids requires a custom solution for extracting the image point array. If the custom grid is
a rectangular grid, the AnnotateGridPoints filter may be used to compute annotations for the image points.

Note that the most important factor in achieving high accuracy results is the precision and accuracy of
extracted calibration points. The calibration grids should be as flat and stiff as possible (cardboard is
not a proper backing material, thick glass is perfect). Take care of proper conditions when taking the
calibration images: minimize motion blur by proper camera and grid mounts, prevent reflections from the
calibration surface (ideally use diffusion lighting). When using a custom calibration grid, make sure that
the points extractor can achieve subpixel precision. Verify that measurements of the real-world grid
coordinates are accurate. Also, when using a chessboard calibration grid, make sure that the whole
calibration grid is visible in the image. Otherwise, it will not be detected because the detection
algorithm requires a few pixels wide quiet zone around the chessboard. Pay attention to the number of
columns and rows, as providing misleading data may make the algorithm work incorrectly or not work at all.

The recommended calibration grid to use in Aurora Vision Studio is a circles grid, see
DetectCalibrationGrid_Circles. Optimal circle radius may vary depending on exact conditions, however a
good rule of thumb is 10 pixels (20 pixel diameter). Smaller circles tend to introduce positioning jitter.
Bigger circles lower the total amount of calibration points and suffer from geometric inaccuracies,
especially when lens distortion and/or perspective is noticeable. Note: it is important to use a symmetric
board as shown in the image below. Asymmetric boards are currently not supported.

Application Guide 3 Image StitchingApplication Guide 3 Image Stitching

Seamless image stitching in multiple camera setup is, in its essence, an image rectification onto the
world plane.

Note that high quality stitching requires a vigilant approach to the calibration process. Each camera
introduces both lens distortion as well as perspective distortion, as it is never positioned perfectly
perpendicular to the analyzed surface. Other factors that need to be taken into account are the camera-
object distance, camera rotation around the optical axis, and image overlap between cameras.

The process consists of two main steps. First, each camera is calibrated to produce a partial, rectified
image. Then all partial images are simply merged using the JoinImages filter.

Image stitching procedure can be outlined as follows:

Symmetric circle grid is the recommended one to use in Aurora Vision
Studio.

Unsupported asymmetric circle
grid.

Detected chessboard grid, with image point array marked.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/DetectCalibrationGrid_Chessboard.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/DetectCalibrationGrid_Circles.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/AnnotateGridPoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/DetectCalibrationGrid_Circles.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/JoinImages.html

Cover the inspection area with two or more cameras. Make sure that fields of view of individual
cameras overlap a bit.

Place a calibration grid onto the inspection area. For each camera, capture the image of a part of the
calibration grid. The grid defines a world coordinate system used for stitching, and so it should
contain some markers from which the coordinates of world plane points will be identifiable for each
camera.

Define the world coordinate extents for which each camera will be responsible. For example, lets
define that camera 1 should cover area from 100 to 200 in X, and from -100 to 100 in Y coordinate;
camera 2 - from 200 to 300 in X, and from -100 to 100 in Y.

For each camera, use a wizard associated with the inRectificationMapinRectificationMap input of RectifyImage filter to
setup the image rectification. Use the captured image for camera calibration and world to image
transform. Use the defined world coordinate extents to setup the rectification map generation (select
"world bounding box" mode of operation). Make sure that the world scale for rectification is set to
the same fixed value for all images.

Use the JoinImages appropriately to merge outputs of RectifyImage filters.

A multi-camera setup for inspection of a flat object.

Stitching result.

Input images, as captured by cameras.

https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/JoinImages.html
https://docs.adaptive-vision.com/5.6/avl/functions/CameraCalibration/RectifyImage.html

Golden TemplateGolden Template

Golden Template technique performs a pixel-to-pixel comparison of two images. This technique is especially
useful when the object's surface or object's shape is very complex.

Aurora Vision Studio offers three ways of performing the golden template comparison.

Comparison based on pixels intensityComparison based on pixels intensity - it can be achieved using the
CompareGoldenTemplate_Intensity. In this method two images are compared pixel-by-pixel and the defect
is classified based on a difference between pixels intensity. This technique is especially useful in
finding defects like smudges, scratches etc.

Example usage of Golden Template technique using the pixels intensity based comparison.

Comparison based on objects edgesComparison based on objects edges - this method is very useful when defects may occur on the edge
of the object and pixel comparison may fail due to different light reflections or the checking the
object surface is not necessary. For matching object's edges use the CompareGoldenTemplate_Edges
filter.

Example usage of Golden Template technique using the edges comparison.

Second version of the comparison based on objects edgesSecond version of the comparison based on objects edges - this method uses more than one image
to create the model for the inspection. Due to that it is not vulnerable to pixel-sized errors and
displacements. Advanced tips on how to use its parameters are located here: CompareGoldenTemplate2.

How To UseHow To Use

Golden template is a previously prepared image which is used to compare image from the camera. This robust
technique allows us to perform quick comparison inspection but some conditions must be met:

stable light conditions,

position of the camera and the object must be still,

precise object positioning

Most applications use the Template Matching technique for finding objects and then matched rectangle is
compared. Golden template image and image to compare must have this same dimensions. To get best results
filter CropImageToRectangle should be used. Please notice that filter CropImageToRectangle performs
cropping using a real values and it has sub-pixel precision.

Golden templateGolden template Defected objectDefected object Found defectsFound defects

Golden templateGolden template Defected objectDefected object Found defectsFound defects

https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CompareGoldenTemplate_Intensity.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CompareGoldenTemplate_Edges.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageAnalysis/CompareGoldenTemplate2.html
https://docs.adaptive-vision.com/5.6/avl/machine_vision_guide/TemplateMatching.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImageToRectangle.html
https://docs.adaptive-vision.com/5.6/avl/functions/ImageSpatialTransforms/CropImageToRectangle.html

Deep LearningDeep Learning

Note:Note: The following article concerns the functionalities related to another product: Deep LearningDeep Learning
Add-onAdd-on. More information are available here.

Table of contents:

1. Introduction

Overview of Deep Learning Tools

Basic Terminology

Stopping Conditions

Preprocessing

Augmentation

2. Anomaly Detection

3. Feature Detection

4. Object Classification

5. Instance Segmentation (deprecated)

6. Point Location

7. Object Location

8. Reading Characters

9. Locating Text

10. Troubleshooting

1. Introduction1. Introduction

Deep Learning is a breakthrough machine learning technique in computer vision. It learns from training
images provided by the user and can automatically generate solutions for a wide range of image analysis
applications. Its key advantage, however, is that it is able to solve many of the applications which have
been too difficult for traditional, rule-based algorithms of the past. Most notably, these include
inspections of objects with high variability of shape or appearance, such organic products, highly
textured surfaces or natural outdoor scenes. What is more, when using ready-made products, such as our
Aurora Vision Deep Learning, the required programming effort is reduced almost to zero. On the other hand,
deep learning is shifting the focus to working with data, taking care of high quality image annotations
and experimenting with training parameters 3 these elements actually tend to take most of the application
development time these days.

Typical applications are:

detection of surface and shape defects (e.g. cracks, deformations, discoloration),

detecting unusual or unexpected samples (e.g. missing, broken or low-quality parts),

identification of objects or images with respect to predefined classes (i.e. sorting machines),

location, segmentation and classification of multiple objects within an image (i.e. bin picking),

product quality analysis (including fruits, plants, wood and other organic products),

location and classification of key points, characteristic regions and small objects,

optical character recognition.

The use of deep learning functionality includes two stages:

1. Training 3 generating a model based on features learned from training samples,

2. Inference 3 applying the model on new images in order to perform the actual machine vision task.

The difference to the traditional image analysis approach is presented in the diagrams below:

Traditional approach: The algorithm must be designed by a human specialist.

Machine learning approach: We only need to provide a training set of labeled images.

https://docs.adaptive-vision.com/deep_learning/

Overview of Deep Learning ToolsOverview of Deep Learning Tools

1. Anomaly Detection 3 this technique is used to detect anomalous (unusual or unexpected) samples. It
only needs a set of fault-free samples to learn the model of normal appearance. Optionally, several
faulty samples can be added to better define the threshold of tolerable variations. This tool is
useful especially in cases where it is difficult to specify all possible types of defects or where
negative samples are simply not available. The output of this tool are: a classification result
(normal or faulty), an abnormality score and a (rough) heatmap of anomalies in the image.

An example of a missing object detection using AvsFilter_DL_DetectAnomalies2 tool.
Left: The original image with a missing element. Right: The classification result with a heatmap of

anomalies.

2. Feature Detection 3 this technique is used to precisely segment one or more classes of pixel-wise
features within an image. The pixels belonging to each class must be marked by the user in the
training step. The result of this technique is an array of probability maps for every class.

An example of image segmentation using AvsFilter_DL_DetectFeatures tool.
Left: The original image of the fundus. Right: The segmentation of blood vessels.

3. Object Classification 3 this technique is used to identify an object in a selected region with one of
user-defined classes. First, it is necessary to provide a training set of labeled images. The result
of this technique is: the name of detected class and a classification confidence level.

An example of object classification using AvsFilter_DL_ClassifyObject tool.

4. Instance Segmentation (deprecated) 3 this technique is used to locate, segment and classify one or
multiple objects within an image. The training requires the user to draw regions corresponding to
objects in an image and assign them to classes. The result is a list of detected objects 3 with their
bounding boxes, masks (segmented regions), class IDs, names and membership probabilities.

Warning:Warning: The Instance SegmentationInstance Segmentation model is trainable in 5.3 and older versions only. In more
recent releases, the models can be only inferred.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html

An example of instance segmentation using AvsFilter_DL_SegmentInstances_Deprecated tool. Left: The
original image. Right: The resulting list of detected objects.

5. Point Location 3 this technique is used to precisely locate and classify key points, characteristic
parts and small objects within an image. The training requires the user to mark points of appropriate
classes on the training images. The result is a list of predicted point locations with corresponding
class predictions and confidence scores.

An example of point location using AvsFilter_DL_LocatePoints tool. Left: The original image. Right:
The resulting list of detected points.

6. Object Location 3 this technique is used to locate and classify one or multiple objects within an
image. In this tool, a user needs to draw rectangles bounding the objects in the scene and specify
their classes. The result of this technique is a list of rectangles bounding the predicted objects
with corresponding class predictions and confidence scores.

An example of instance segmentation using AvsFilter_DL_LocateObjects tool. Left: The original image.
Right: The resulting list of detected objects.

7. Reading Characters 3 this technique is used to locate and recognize characters within an image. The
result is a list of found characters.

An example of optical character recognition using AvsFilter_DL_ReadCharacters tool. Left: The original
image. Right: The image with the recognized characters drawn.

8. Locating Text 3 this technique is used to locate text within an image. The result is an array of found
located rectangles.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html

An example of locating text using AvsFilter_DL_LocateText tool. Left: The original image. Right: The
image with the found text regions.

Basic TerminologyBasic Terminology

You do not need to have the specialistic scientific knowledge to develop your deep learning solutions.
However, it is highly recommended to understand the basic terminology and principles behind the process.

Deep neural networksDeep neural networks

Aurora Vision provides access to several standardized deep neural networks architectures created, adjusted
and tested to solve industrial machine vision tasks. Each of the networks is a set of trainable
convolutional filters and neural connections which can model complex transformations of an image with the
goal to extract relevant features and use them to solve a particular problem. However, these networks are
useless without proper amount of good quality data provided for training process. This documentation
presents necessary practical hints on creating an effective deep learning model.

Depth of a neural networkDepth of a neural network

Due to various levels of task complexity and different expected execution times, the users can choose one
of five available network depths. The Network DepthNetwork Depth parameter is an abstract value defining the memory
capacity of a neural network (i.e. the number of layers and filters) and the ability to solve more complex
problems. The list below gives hints about selecting the proper depth for a task characteristics and
conditions.

1. Low depth (value 1-2)

A problem is simple to define.

A problem could be easily solved by a human inspector.

A short time of execution is required.

Background and lighting do not change across images.

Well-positioned objects and good quality of images.

2. Standard depth (default, value 3)

Suitable for a majority of applications without any special conditions.

A modern CUDA-enabled GPU is available.

3. High depth (value 4-5)

A big amount of training data is available.A big amount of training data is available.

A problem is hard or very complex to define and solve.

Complicated irregular patterns across images.

Long training and execution times are not a problem.

A large amount of GPU RAM (g4GB) is available.

Varying background, lighting and/or positioning of objects.

Tip: Test your solution with a lower depth first, and then increase it if needed.

Note: A higher network depth will lead to a significant increase in memory and computational complexity of
training and execution.

Data divisionData division

While training the model, we use one set of images to estimate the network weights. This set is called
trainingtraining data and should reflect the problem as well as possible (e.g., in the case of object
classification, representants for all considered classes should be present in this set).

To be sure that the learned model generalizes well, or in other words can give similar results with newly
seen data, we need to prepare validationvalidation data, too. This second set should contain a small number of
representative images to the learned problem. A rule of a thumb says, that its size should be 10% of the
training data set size and have a good representation of all problems (e.g., at least one image for each
class in the case of object classification should be present in validation data).

The images loaded to Deep Learning Editor must be assigned to one of those two datasets before training
procedure can follow.

When the amount of data is large, one may want to simulate how the trained model will work on images not
used during the training (it allows checking the performance accessible during the inference). In such a
case, assign images to testtest data.

Training processTraining process

Model training is an iterative process of updating neural network weights based on the training data. One
iterationiteration involves some number of steps (determined automatically), each step consists of the following
operations:

1. selection of a small subset (batchbatch) of training samples,

2. calculation of an error measure for these samples,

3. updating the weights to achieve lower error for these samples.

At the end of each iteration, the current model is evaluated on a separate set of validation samples
selected before the training process. Depending on the tool, validation set can be automatically chosen
from the training samples, or selected by the user. It is used to simulate how neural network would work
with real images not used during training. Only the set of network weights corresponding with the best
validation score at the end of training is saved as the final solution. Monitoring the training,
validation and loss score (blue, orange and purple lines in the figures below) in consecutive iterations

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html

gives fundamental information about the progress:

1. Training and validation scores are improving and loss score is decreasing 3 keep training, the model
can still improve.

2. Training and validation scores has stopped improving and loss score is decreasing 3 keep training for
a few iterations more and stop if there is still no change.

3. Loss score is improving 3 you can stop training, model has probably started overfittingoverfitting to your
training data (remembering exact samples rather than learning rules about features). It may also be
caused by too small amount of diverse samples or too low complexity of the problem for a network
selected (try lower Network DepthNetwork Depth).

The above graphs represent training progress in the Deep Learning Editor. The blue line indicates
performance on the training samples, the orange line represents performance on the validation samples and
the purple line represents the loss function. Please note the blue line is plotted more frequently than
the orange line as validation performance is verified only at the end of each iteration.

Stopping ConditionsStopping Conditions

The user can stop the training manually by clicking the StopStop button. Alternatively, it is also possible to
set one or more stopping conditions:

1. Iteration CountIteration Count 3 training will stop after a fixed number of iterations.

2. Iterations without ImprovementIterations without Improvement 3 training will stop when the best validation score was not
improved for a given number of iterations.

3. TimeTime 3 training will stop after a given number of minutes has passed.

4. Validation AccuracyValidation Accuracy or Validation ErrorValidation Error 3 training will stop when the validation score reaches a
given value.

PreprocessingPreprocessing

To adjust performance to a particular task, the user can apply some additional transformations to the
input images before training starts:

1. DownsampleDownsample 3 reduction of the image size to accelerate training and execution times, at the expense
of lower level of details possible to detect. Increasing this parameter by 1 will result in
downsampling by the factor of 2 over both image dimension.

2. Convert to GrayscaleConvert to Grayscale 3 while working with problems where color does not matter, you can choose to
work with monochrome versions of images.

AugmentationAugmentation

In case when the number of training images can be too small to represent all possible variations of
samples, it is recommended to use data augmentations that add artificially modified samples during
training. This option will also help avoiding overfitting.

Below is a description of the available augmentations and examples of the corresponding transformations:

1. LuminanceLuminance 3 change brightness of samples by a random percentage (between -ParameterValue and
+ParameterValue) of pixel values (0-255). For a given augmentation values, samples as below can be
added to the training set.

2. ContrastContrast 3 difference in brightness or color between elements of an image. This parameter enhances
the network to recognize details more effectively. It is specified by a single float value that
defines the range of contrast adjustments as (-contrast, contrast). These values can range from -50%
to 50%, where 0% indicates no change, 50% represents the maximum increase in contrast, and -50%
signifies the maximum decrease in contrast. The default setting is 0%. For instance, if a 20% value is
chosen, the contrast change applied to an image will be randomly selected from a range of -20% to 20%
and incorporated into the training set.

3. BrightnessBrightness 3 increase the brightness of samples by multiplying pixel values. This parameter is
introduced instead of LuminanceLuminance in some of Deep Learning tools.

An example of correct training. A graph characteristic for network overfitting.

Luminance=-50. Luminance=-25. Original image. Luminance=25. Luminance=50.

Contrast=-50%. Contrast=-20%. Original image (0%). Contrast=20%. Contrast=50%.

4. NoiseNoise 3 modify samples with uniform noise. Value of each channel and pixel is modified separately, by
random percentage (between -ParameterValue and +ParameterValue) of pixel values (0-255). Please note
that choosing an appropriate augmentation value should depend on the size of the feature in pixels.
Larger value will have a much greater impact on small objects than on large objects. For a tile with
the feature "F" with the size of 130x130 pixels and a given augmentation values, samples as below can
be added to the training set.:

5. Gaussian BlurGaussian Blur 3 blur samples with a kernel of a size randomly selected between 0 and the provided
maximum kernel size. Please note that choosing an appropriate Gaussian Blur Kernel Size should depend
on the size of the feature in pixels. Larger kernel sizes will have a much greater impact on small
objects than on large objects. For a tile with the feature "F" with the size of 130x130 pixels and a
given augmentation values, samples as below can be added to the training set.:

6. RotationRotation 3 rotate samples by a random angle between -ParameterValue and +ParameterValue. Measured in
degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given
augmentation values, samples as below can be added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation
values, samples as below can be added to the training set.

7. Flip Up-DownFlip Up-Down 3 reflect samples along the X axis.

8. Flip Left-RightFlip Left-Right 3 reflect samples along the Y axis.

9. Relative TranslationRelative Translation 3 translate samples by a random shift, defined as a percentage (between -
ParameterValue and +ParameterValue) of the tile. Works independently in both X and Y dimensions.

Brightness=0.2. Brightness=0.5. Original image. Brightness=1.5. Brightness=1.8.

Original
grayscale image.

Grayscale image.
Noise=4.

Grayscale image.
Noise=10.

Grayscale image.
Noise=25.

Grayscale image.
Noise=50.

Original RGB
image.

RGB image.
Noise=4.

RGB image.
Noise=10.

RGB image.
Noise=25.

RGB image.
Noise=50.

Original image. Gaussian Blur=5. Gaussian Blur=10. Gaussian Blur=25. Gaussian Blur=50.

Tile rotation=-45°. Tile rotation=-20°. Original tile. Tile rotation=20°. Tile rotation=45°.

Image rotation=-
45°.

Image rotation=-
20°.

Original
image.

Image
rotation=20°.

Image
rotation=45°.

No flips. Up-Down flip. Left-Right flip. Both flips.

In Locate Points, for a tile with the feature "F" and given augmentation values, samples as below can
be added to the training set.

10. ScaleScale 3 resize samples relatively to their original size by a random percentage between the provided
minimum scale and maximum scale.

11. Horizontal ShearHorizontal Shear 3 shear samples horizontally by an angle between -ParameterValue and
+ParameterValue. Measured in degrees.

In Detect Features, Locate Points and Detect Anomalies, for a tile with the feature "F" and given
augmentation values, samples as below can be added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation
values, samples as below can be added to the training set.

12. Vertical ShearVertical Shear 3 analogous to Horizontal Shear.

In Detect Features, Locate Points, and Detect Anomalies, for a tile with the feature "F" and given
augmentation values, samples as below can be added to the training set.

In Classify Object and Segment Instances, for an image with the feature "F" and given augmentation
values, samples as below can be added to the training set.

Warning: the choice of augmentation options depends only on the task we want to solve. Sometimes they
might be harmful for quality of a solution. For a simple example, the Rotation should not be enabled if
rotations are not expected in a production environment. Enabling augmentations also increases the network
training time (but does not affect execution time!)

2. Anomaly Detection2. Anomaly Detection

Warning:Warning: The AvsFilter_DL_DetectAnomalies1AvsFilter_DL_DetectAnomalies1 model is trainable in 5.3 and older versions only. In
more recent releases, the models can only be used for inference.

Aurora Vision Deep Learning provides two ways of defect detection:

AvsFilter_DL_DetectAnomalies2 Golden Template

AvsFilter_DL_DetectAnomalies2 Similarity-Based

Tile translation x=20%, y=20%. Original tile. Tile translation x=-20%, y=-20%.

Resize=50%. Original image. Resize=150%.

Horizontal Shear=-30. Original tile. Horizontal Shear=30.

Horizontal Shear=-30. Original image. Horizontal Shear=30.

Vertical Shear=-30. Original tile. Vertical Shear=30.

Vertical Shear=-30. Original image. Vertical Shear=30.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies1.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html

The AvsFilter_DL_DetectAnomalies2 Golden TemplateGolden Template is an appropriate method for positioned objects with
complex details. The tool divides the images into regions and creates a separate model for each region.
The tool has the Texture ModeTexture Mode dedicated for texture defects detection. It can be used for plain surfaces
or the ones with a simple pattern.

The AvsFilter_DL_DetectAnomalies2 Similarity-BasedSimilarity-Based is a good general-purpose technique that can handle
detailed as well as simple datasets. The tool operates by first assembling a collection of normal features
during training and then by comparing observed image segments against this collection during inference to
assess normality.

To sum up, while choosing the tool for anomaly detection, first check the Similarity-BasedSimilarity-Based approach. If
the model isn't producing sufficiently accurate defect localizations, please try the Golden TemplateGolden Template
approach.

An example of textile defect detection using the AvsFilter_DL_DetectAnomalies2.

ParametersParameters

Max Translation Max Translation is related to the AvsFilter_DL_DetectAnomalies2 Golden TemplateGolden Template approach. It is
the maximal position change tolerance. If the parameter increases, the working area of a small model
enlarges and the number of the created small models decreases.

Model Complexity Model Complexity (or just Complexity) is related to the AvsFilter_DL_DetectAnomalies2 approach.
Greater value may improve model effectiveness, especially for complex objects, at the expense of
memory usage and interference time.

MetricsMetrics

Measuring accuracy of anomaly detection tools is a challenging task. The most straightforward approach is
to calculate the Recall/Precision/F1 measures for the whole images (classified as GOOD or BAD, without
looking at the locations of the anomalies). Unfortunately, such an approach is not very reliable due to
several reasons, including: (1) when we have a limited number of test images (like 20), the scores will
vary a lot (like �=5%) when just one case changes; (2) very frequently the tools we test will find random
false anomalies, but will not find the right ones - and still will get high scores as the image as a whole
is considered correctly classified. Thus, it may be tempting to use annotated anomaly regions and
calculate the per-pixel scores. However, this would be too fine-grained. For anomaly detection tasks we do
not expect the tools to be necessarily very accurate in terms of the location of defects. Individual
pixels do not matter much. Instead, we expect that the anomalies are detected "more or less" at the right
locations. As a matter of fact, some tools which are not very accurate in general (especially those based
on auto-encoders) will produce relatively accurate outlines for the anomalies they find, while the methods
based on one-class classification will usually perform better in general, but the outlines they produce
will be blurred, too thin or too thick.

For these reasons, we introduced an intermediate approach to calculation of Recall. Instead of using the
per-image or the per-pixel methods, we use a per-region one. Here is how we calculate Recall:

For each anomaly region we check if there is any single pixel in the heatmap above the threshold. If
it is, we increase TPTP (the number of True Positives) by one. Otherwise, we increase FNFN (the number of
False Negatives) by one.

Then we use the formula:

The above method works for Recall, but cannot be directly applied to the calculation of Precision. Thus,
for Precision we use a per-pixel approach, but it also comes with its own difficulties. First issue is
that we often find ourselves having a lot of GOOD samples and a very limited set of BAD testing cases.
This means unbalanced testing data, which in turn means that the Precision metric is highly affected with
the overwhelming quantity of GOOD samples. The more GOOD samples we have (at the same amount of BAD
samples), the lower Precision will be. It may be actually very low, often not reflecting the true
performance of the tool. For that reason, we need to incorporate balancing into our metrics.

A second issue with Precision in real-world projects is that False Positives tend to naturally occur
within BAD images, outside of the marked anomaly regions. This happens for several reasons, but is
repeatable among different projects. Sometimes if there is a defect, it often means that something was
broken and other parts of the object may be slightly affected too, sometimes in a visible way, sometimes
with a level of ambiguity. And quite often the objects under inspection simply get affected by the process
of artificially introducing defects (like someone is touching a piece of fabric and accidentally causes
wrinkles that would normally not occur). For this reason, we calculate the per-pixel False Negatives only
on GOOD images.

The complete procedure for calculation of Precision is:

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html

We calculate the average pp_TPpp_TP (the number of per-pixel True Positives) across all BAD testing
samples.

We calculate the average pp_FPpp_FP (the number of per-pixel False Positives) across all GOOD testing
samples.

Then we use the formula:

Finally we calculate the F1 score in the standard way, for practical reasons neglecting the fact that the
Recall and Precision values that we unify were calculated in different ways. We believe that this metric
is best for practical applications.

Model UsageModel Usage

In Detect Anomalies 2 variant, a model should be loaded with AvsFilter_DL_DetectAnomalies2_Deploy prior to
executing it with AvsFilter_DL_DetectAnomalies2. Alternatively, model can be loaded directly by
AvsFilter_DL_DetectAnomalies2 filter, but it will then require time-consuming initialization in the first
program iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

3. Feature Detection (segmentation)3. Feature Detection (segmentation)

This technique is used to detect pixel-wise regions corresponding to defects or 3 in a general sense 3 to
any image features. A feature here may be also something like the roads on a satellite image or an object
part with a characteristic surface pattern. Sometimes it is also called pixel labeling as it assigns a
class label to each pixel, but it does not separate instances of objects.

Training DataTraining Data

Images used for training can be of different sizes and can have different ROIs defined. However, it is
important to ensure that the scale and the characteristics of the features are consistent with that of the
production environment.

Each and every feature should be marked on all training images, or the ROI should be limited to include
only marked defects. Incompletely or inconsistently marked features are one of the main reasons of poor
accuracy. REMEMBER: If you leave even a single piece of some feature not marked, it will be used as a
negative sample and this will highly confuse the training process!

The marking precision should be adjusted to the application requirements. The more precise marking the
better accuracy in the production environment. While marking with low precision it is better to mark
features with some excess margin.

Multiple classes of featuresMultiple classes of features

It is possible to detect many classes of features separately using one model. For example, road and
building like in the image below. Different features may overlap but it is usually not recommended. Also,
it is not recommended to define more than a few different classes in a single model. On the other hand, if
there are two features that may be mutually confusing (e.g. roads and rivers), it is recommended to have
separate classes for them and mark them, even if one of the classes is not really needed in the results.
Having the confusing feature clearly marked (and not just left as the background), the neural network will
focus better on avoiding misclassification.

An example of wood knots marked with low precision.
An example of tile cracks marked with high

precision.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectAnomalies2.html

An example of marking two different classes (red roads and yellow buildings) in the one image.

Patch (Feature) SizePatch (Feature) Size

Detect Features is an end-to-end segmentation tool which works best when analysing an image in a medium-
sized square window. The size of this window is defined by the Feature Size parameter. It should be not
too small, and not too big. Typically much bigger than the size (width or diameter) of the feature itself,
but much less than the entire image. In a typical scenario the value of 96 or 128 works quite well.

Performance Tip 1: a larger Feature Size increases the training time and requires more GPU memory and more
training samples to operate effectively. When Feature Size exceeds 128 pixels and still looks too small,
it is worth considering the DownsampleDownsample option.

Performance Tip 2: if the execution time is not satisfying you can set the inOverlap filter input to
False. It should speed up the inspection by 10-30% at the expense of less precise results.

Examples of Feature Size: too large or too small (red), maybe acceptable (yellow) and good (green).
Remember that this is just an example and may vary in other cases.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_DetectFeatures_Deploy filter before using
AvsFilter_DL_DetectFeatures filter to perform segmentation of features. Alternatively, the model can be
loaded directly by AvsFilter_DL_DetectFeatures filter, but it will result in a much longer time of the
first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.

To shorten feature segmentation process you can disable inOverlapinOverlap option. However, in most cases, it
decreases segmentation quality.

Feature segmentation results are passed in a form of bitmaps to outHeatmapsoutHeatmaps output as an array and
outFeature1outFeature1, outFeature2outFeature2, outFeature3outFeature3 and outFeature4outFeature4 as separate images.

Due to the lack of context on the image border, correctly detecting objects at the image edges is
problematic. Therefore, the heatmaps returned by the network focus on the image content beyond the edges
without analysing the data located on the image border. When the inRoiinRoi is applied, the border is removed
from the selected image region.

4. Object Classification4. Object Classification

This technique is used to identify the class of an object within an image or within a specified region.

The Principle of OperationThe Principle of Operation

During the training phase, the object classification tool learns representation of user defined classes.
The model uses generalized knowledge gained from samples provided for training, and aims to obtain good
separation between the classes.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_DetectFeatures.html

Result of classification after training.

After a training process is completed, the user is presented with a confusion matrix. It indicates how
well the model separated the user defined classes. It simplifies identification of model accuracy,
especially when a large number of samples has been used.

Confusion matrix presents correct (diagonal) and incorrect assignment of samples to the user defined
classes.

Training ParametersTraining Parameters

In addition to the default training parameters (list of parameters available for all Deep Learning
algorithms), the AvsFilter_DL_ClassifyObject tool provides a Detail LevelDetail Level parameter which enables control
over the level of detail needed for a particular classification task. For majority of cases the default
value of 1 is appropriate, but if images of different classes are distinguishable only by small features
(e.g. granular materials like flour and salt), increasing value of this parameter may improve
classification results.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_ClassifyObject_Deploy filter before using
AvsFilter_DL_ClassifyObject filter to perform classification. Alternatively, model can be loaded directly
by AvsFilter_DL_ClassifyObject filter, but it will result in a much longer time of the first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.

Classification results are passed to outClassNameoutClassName and outClassIndexoutClassIndex outputs.

The score value outScoreoutScore indicates the confidence of classification.

5. Instance Segmentation (deprecated)5. Instance Segmentation (deprecated)

Warning:Warning: The Instance SegmentationInstance Segmentation model is trainable in 5.3 and older versions only. In more recent
releases, the models can be only inferred.

This technique is used to locate, segment and classify one or multiple objects within an image. The result
of this technique are lists with elements describing detected objects 3 their bounding boxes, masks
(segmented regions), class IDs, names and membership probabilities.

Note that in contrary to feature detection technique, instance segmentation detects individual objects and
may be able to separate them even if they touch or overlap. On the other hand, instance segmentation is
not an appropriate tool for detecting features like scratches or edges which may possibly have no object-
like boundaries.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ClassifyObject.html

Training DataTraining Data

The training phase requires the user to draw regions corresponding to objects on an image and assign them
to classes.

Editor for marking objects.

Training ParametersTraining Parameters

Instance segmentation training adapts to the data provided by the user and does not require any additional
training parameters besides the default ones.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_SegmentInstances_Deploy_Deprecated filter before using
AvsFilter_DL_SegmentInstances_Deprecated filter to perform classification. Alternatively, model can be
loaded directly by AvsFilter_DL_SegmentInstances_Deprecated filter, but it will result in a much longer
time of the first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.

To set minimum detection score inMinDetectionScoreinMinDetectionScore parameter can be used.

Maximum number of detected objects on a single image can be set with inMaxObjectsCountinMaxObjectsCount parameter. By
default it is equal to the maximum number of objects in the training data.

Original image. Visualized instance segmentation results.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deploy_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html

Results describing detected objects are passed to following outputs:

bounding boxes: outBoundingBoxesoutBoundingBoxes,

class IDs: outClassIdsoutClassIds,

class names: outClassNamesoutClassNames,

classification scores: outScoresoutScores,

masks: outMasksoutMasks.

6. Point Location6. Point Location

This technique is used to precisely locate and classify key points, characteristic parts and small objects
within an image. The result of this technique is a list of predicted point locations with corresponding
class predictions and confidence scores.

When to use point location instead of instance segmentation:

precise location of key points and distinctive regions with no strict boundaries,

location and classification of objects (possibly very small) when their segmentation masks and
bounding boxes are not needed (e.g. in object counting).

When to use point location instead of feature detection:

coordinates of key points, centroids of characteristic regions, objects etc. are needed.

Training DataTraining Data

The training phase requires the user to mark points of appropriate classes on the training images.

Editor for marking points.

Feature SizeFeature Size

In the case of the Point Location tool, the Feature Size parameter corresponds to the size of an object or
characteristic part. If images contain objects of different scales, it is recommended to use a Feature
Size slightly larger than the average object size, although it may require experimenting with different
values to achieve the best possible results.

Performance tip: a larger feature size increases the training time and needs more memory and training
samples to operate effectively. When feature size exceeds 64 pixels and still looks too small, it is worth
considering the DownsampleDownsample option.

Original image. Visualized point location results.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_SegmentInstances_Deprecated.html

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_LocatePoints_Deploy filter before using
AvsFilter_DL_LocatePoints filter to perform point location and classification. Alternatively, model can be
loaded directly by AvsFilter_DL_LocatePoints filter, but it will result in a much longer time of the first
iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.

To set minimum detection score inMinDetectionScoreinMinDetectionScore parameter can be used.

inMinDistanceRatioinMinDistanceRatio parameter can be used to set minimum distance between two points to be considered
as different. The distance is computed as MinDistanceRatio * FeatureSize. If the value is not enabled,
the minimum distance is based on the training data.

To increase detection speed but with potentially slightly worse precision inOverlapinOverlap can be set to
False.

Results describing detected points are passed to following outputs:

point coordinates: outLocationsoutLocations,

class IDs: outClassIdsoutClassIds,

class names: outClassNamesoutClassNames,

classification scores: outScoresoutScores.

7. Locating objects7. Locating objects

This technique is used to locate and classify one or multiple objects within an image. The result of this
technique is a list of rectangles bounding the predicted objects with corresponding class predictions and
confidence scores.

The tool returns the rectangle region containing the predicted objects and showing their approximate
location and orientation, but it doesn't return the precise position of the key points of the object or
the segmented region. It is an intermediate solution between the Point Location and the Instance
Segmentation.

Training DataTraining Data

The training phase requires the user to mark rectangles bounding objects of appropriate classes on the
training images.

Original image. Visualized object location results.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocatePoints.html

Editor for marking objects.

Model UsageModel Usage

A model should be loaded with AvsFilter_DL_LocateObjects_Deploy filter before using
AvsFilter_DL_LocateObjects filter to perform object location and classification. Alternatively, model can
be loaded directly by AvsFilter_DL_LocateObjects filter, but it will result in a much longer time of the
first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use inRoiinRoi input.

To set minimum detection score inMinDetectionScoreinMinDetectionScore parameter can be used.

Results describing detected objects are passed to the object output: outObjectsoutObjects.

8. Reading Characters8. Reading Characters

This technique is used to locate and recognize characters within an image. The result is a list of found
characters.

This tool uses a pretrained model and cannot be trained.

Model UsageModel Usage

A model should be loaded with the AvsFilter_DL_ReadCharacters_Deploy filter before using the
AvsFilter_DL_ReadCharacters filter to perform recognition. Alternatively, a model can be loaded directly
by the AvsFilter_DL_ReadCharacters filter, but it may result in a longer time of the first iteration.

Original image. Visualized results of the OCR tool.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateObjects.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html

Running the Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of the image analysis and/or to set a text orientation you can use the inRoiinRoi input.

You can set one of the available pretrained model types in the AvsFilter_DL_ReadCharacters_Deploy
filter using the inPretrainedModelType input or, in the AvsFilter_DL_ReadCharacters filter, using the
inModelID/PretrainedModel input. Differences between the various model types are elaborated upon here.

The average size (in pixels) of characters in the analysed area should be set with the inCharHeightinCharHeight
parameter. Here you can learn more about the relation between the inCharRange input value and the type
of model that you selected.

To improve the detection/recognition accuracy for a font with exceptionally thin or wide contours you
can use theinWidthScaleinWidthScale input. To some extent, it may also help in case of characters positioned
very close to each other.

To filter false positive results near true characters use inCharSpacinginCharSpacing parameter.

To limit or increase the set of recognized characters (e.g. to exclude digits or to include
punctuation marks) use the inCharRangeinCharRange parameter.

To filter results by polarity and contrast use inPolarizationinPolarization and inContrastThresholdinContrastThreshold parameters.

To remove results at the edge of ROI inRemoveBoundaryCharactersinRemoveBoundaryCharacters parameter.

To postprocess results of AvsFilter_DL_ReadCharacters you can use MergeCharactersIntoLines filter.

To get string by connection outCharactersoutCharacters

To match known inPatterninPattern use grammar rules

9. Locating Text9. Locating Text

This technique is used to locate text within an image. The result is an array of found located rectangles.

This tool uses a pretrained model and cannot be trained.

Model UsageModel Usage

A model should be loaded with the AvsFilter_DL_LocateText_Deploy filter before using the
AvsFilter_DL_LocateText filter to perform recognition. Alternatively, model can be loaded directly by the
AvsFilter_DL_LocateText filter, but it may result in a longer time of the first iteration.

Running Aurora Vision Deep Learning Service simultaneously with these filters is discouraged as it may
result in degraded performance or errors.

Parameters:

To limit the area of image analysis you can use the inRoiinRoi input.

You can set one of the available pretrained model types in the AvsFilter_DL_LocateText filter using
the inModelID/PretrainedModel input. Differences between the various model types are elaborated upon
here.

The average size (in pixels) of characters in the analysed area should be set with the inCharHeightinCharHeight
parameter. Here you can learn more about the relation between the inCharRange input value and the type
of model that you selected.

To improve the detection accuracy for a font with exceptionally thin or wide contours you can use the
inWidthScaleinWidthScale input. To some extent, it may also help in case of characters positioned very close to
each other.

To set the minimum area value threshold for detection, inMinTextAreainMinTextArea parameter can be used.

10. Troubleshooting10. Troubleshooting

Below you will find a list of most common problems.

1. Network overfitting1. Network overfitting

A situation when a network loses its ability to generalize over available problems and focuses only on
training data.

Original image.

Visualized text location results, with orientation marked at
origin.

https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/OcrPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/OcrPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/MergeCharactersIntoLines.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_ReadCharacters.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/MergeCharactersIntoLines.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText_Deploy.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/LocateTextPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/datatypes/LocateTextPretrainedModel.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html
https://docs.adaptive-vision.com/5.6/avl/functions/DeepLearning/AvsFilter_DL_LocateText.html

Symptoms: during training, the loss graph starts rising, the validation graph stops at one level and
training graph continues to rise. Defects on training images are marked very precisely, but defects on new
images are marked poorly.

A graph characteristic for network overfitting.

Causes:

The number of test samples is too small.

Training time is too long.

Possible solutions:

Provide more real samples of different objects.

Use more augmentations.

Reduce Network Depth.

2. Susceptibility to changes in lighting conditions2. Susceptibility to changes in lighting conditions

Symptoms: network is not able to process images properly when even minor changes in lighting occur.

Causes:

Samples with variable lighting were not provided.

Solution:

Provide more samples with variable lighting.

Enable "Luminance" option for automatic lighting augmentation.

3. No progress in network training3. No progress in network training

Symptoms 5 even though the training time is optimal, there is no visible training progress.

Training progress with contradictory samples.

Causes:

The number of samples is too small or the samples are not variable enough.

Image contrast is too small.

The chosen network architecture is too small.

There is contradiction in defect masks.

Solution:

Modify lighting to expose defects.

Remove contradictions in defect masks.

Tip: Remember to mark all defects of a given type on the input images or remove images with unmarked
defects. Marking only a part of defects of a given type may negatively influence the network learning
process.

4. Training/sample evaluation is very slow4. Training/sample evaluation is very slow

Symptoms 5 training or sample evaluation takes a lot of time.

Causes:

Resolution of the provided input images is too high.

Fragments that cannot possibly contain defects are also analyzed.

Solution:

Enable "Downsample" option to reduce the image resolution.

Limit ROI for sample evaluation.

Use lower Network Depth

See AlsoSee Also

Deep Learning training API documentation - instruction how to perform training of Deep Learning models
(5.3 and older version only).

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/5.6/avl/technical_issues/DeepLearningTrainingAPI.html
https://www.adaptive-vision.com/

	Aurora Vision Library 5.6
	Machine Vision Guide
	Image Processing
	Introduction
	Regions of Interest
	Image Boundary Processing
	Toolset
	Image Combinators
	Image Smoothing
	Image Morphology
	Gradient Analysis
	Spatial Transforms
	Spatial Transform Maps
	Image Thresholding
	Image Pixel Analysis
	Image Features
	Blob Analysis
	Introduction
	Concept
	Examples
	Rubber Band
	Mounts
	Extraction
	Thresholding
	Classic Thresholding
	Dynamic Thresholding
	Color-based Thresholding
	Refinement
	Region Morphology
	Dilation and Erosion
	Closing and Opening
	Other Refinement Methods
	Analysis
	Region Features
	Numeric Features
	Non-numeric Features
	Case Studies
	Capsules
	FindRegion Routine
	Complete Solution
	1D Edge Detection
	Introduction
	Concept
	Example
	Filter Toolset
	Parameters
	Profile Extraction
	Edge Extraction
	Edge Transition
	Stripe Intensity
	Case Study: Blades
	1D Edge Detection – Subpixel Precision
	Introduction
	Example: Parabola Fitting
	Advanced: Methods Available in Aurora Vision
	Shape Fitting
	Introduction
	Concept
	Toolset
	Parameters
	Template Matching
	Introduction
	Concept
	Naive Template Matching
	Image Correlation
	Cross-Correlation
	Normalized Cross-Correlation
	Template Correlation Image
	Identification of Matches
	Summary
	Grayscale-based Matching, Edge-based Matching
	Image Pyramid
	Pyramid Processing
	Grayscale-based Matching
	Edge-based Matching
	Filter Toolset
	Available Filters
	Advanced Application Schema
	Schema 1: Model Creation in a Separate Program
	Schema 2: Dynamic Model Creation
	Model Creation
	Height of the Pyramid
	Angle Range
	Scale Range
	Edge Detection Settings (only Edge-based Matching)
	Matching
	Tips and Best Practices
	How to Select a Method?
	How to even further upgrade the results of Edge-based Matching?
	Using Local Coordinate Systems
	Introduction
	Creating a Local Coordinate System
	Using a Local Coordinate System
	Example 1: Alignment from Template Matching
	Example 2: Alignment from Blob Analysis
	Manual Alignment
	Not Mixing Local Coordinate Systems
	Optical Character Recognition - traditional method
	Introduction
	Concept
	Using high level Optical Character Recognition filters
	Details on Optical Character Recognition technique
	Reading text from images
	Getting text location
	Extracting text from the background
	Segmenting text
	Using prepared OCR models
	Character recognition
	Interpreting results
	Verifying results
	Preparation of the OCR models
	Preparation of the training data set
	Selection of normalization size and character features
	Training of the OCR model
	Saving the training results
	Camera Calibration and World Coordinates
	Camera Calibration
	World Plane - Measurements and Rectification
	Extraction of Calibration Grids
	Application Guide – Image Stitching
	Golden Template
	How To Use
	Deep Learning
	1. Introduction
	Overview of Deep Learning Tools
	Basic Terminology
	Deep neural networks
	Depth of a neural network
	Data division
	Training process
	Stopping Conditions
	Preprocessing
	Augmentation
	2. Anomaly Detection
	Parameters
	Metrics
	Model Usage
	3. Feature Detection (segmentation)
	Training Data
	Multiple classes of features
	Patch (Feature) Size
	Model Usage
	4. Object Classification
	The Principle of Operation
	Training Parameters
	Model Usage
	5. Instance Segmentation (deprecated)
	Training Data
	Training Parameters
	Model Usage
	6. Point Location
	Training Data
	Feature Size
	Model Usage
	7. Locating objects
	Training Data
	Model Usage
	8. Reading Characters
	Model Usage
	9. Locating Text
	Model Usage
	10. Troubleshooting
	1. Network overfitting
	2. Susceptibility to changes in lighting conditions
	3. No progress in network training
	4. Training/sample evaluation is very slow
	See Also

